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C Discussion of Theorem 1

C.1 Examples

We provide two examples of distributions of (X,W ) that satisfy Assumptions 1 and 2, and show

two possible ways in which the instrument W can shift the conditional distribution of X given

W . Figure 1 displays the corresponding conditional distributions.

Example C.1 (Normal density). Let (X̃, W̃ ) be jointly normal with mean zero, variance one,

and correlation 0 < ρ < 1. Let Φ(·) denote the distribution function of a N(0, 1) random

variable. Define X = Φ(X̃) and W = Φ(W̃ ). Since X̃ = ρW̃ + (1− ρ2)1/2U for some standard

normal random variable U that is independent of W̃ , we have

X = Φ(ρΦ−1(W ) + (1− ρ2)1/2U)

where U is independent of W . Therefore, the pair (X,W ) satisfies condition (7) of our monotone

IV Assumption 1. Lemma I.3 below verifies that the remaining conditions of Assumption 1 as

well as Assumption 2 are also satisfied. �

Example C.2 (Two-dimensional unobserved heterogeneity). LetX = U1+U2W , where U1, U2,W

are mutually independent, U1, U2 ∼ U [0, 1/2] and W ∼ U [0, 1]. Since U2 is positive, it is straight-

forward to see that the stochastic dominance condition (7) is satisfied. Lemma I.4 below shows

that the remaining conditions of Assumption 1 as well as Assumption 2 are also satisfied. �

Figure 1 shows that, in Example C.1, the conditional distribution at two different values

of the instrument is shifted to the right at every value of X, whereas, in Example C.2, the

conditional support of X given W = w changes with w, but the positive shift in the cdf of

X|W = w occurs only for values of X in a subinterval of [0, 1].

C.2 Remarks

Consider the linear equation (5). By Assumption 2(i), the operator T is compact, and so

‖hk‖2
‖Thk‖2

→∞ as k →∞ for some sequence {hk, k ≥ 1} ⊂ L2[0, 1]. (41)

Property (41) means that ‖Th‖2 being small does not necessarily imply that ‖h‖2 is small and,

therefore, the inverse of the operator T : L2[0, 1]→ L2[0, 1], when it exists, cannot be continuous.

Therefore, (5) is ill-posed in Hadamard’s sense1. Lemma A.1, on the other hand, implies that,

under Assumptions 1 and 2, (41) is not possible if hk belongs to the setM of monotone functions

1Well- and ill-posedness in Hadamard’s sense are defined as follows. Let A : D → R be a continuous mapping

between metric spaces (D, ρD) and (R, ρR). Then, for d ∈ D and r ∈ R, the equation Ad = r is called “well-posed”

on D in Hadamard’s sense (see Hadamard (1923)) if (i) A is bijective and (ii) A−1 : R→ D is continuous, so that

for each r ∈ R there exists a unique d = A−1r ∈ D satisfying Ad = r, and, moreover, the solution d = A−1r is

continous in “the data” r. Otherwise, the equation is called “ill-posed” in Hadamard’s sense.
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Figure 1: Plots of FX|W (x|w1) and FX|W (x|w2) in Examples C.1 and C.2, respectively.

in L2[0, 1] for all k ≥ 1 and we replace the L2-norm ‖ · ‖2 in the numerator of the left-hand side

of (41) by the truncated L2-norm ‖ · ‖2,t.
In Remark C.1, we show that truncating the norm in the numerator is not a significant

modification in the sense that for most ill-posed problems, and in particular for all severely

ill-posed problems, (41) holds even if we replace the L2-norm ‖ · ‖2 in the numerator of the

left-hand side of (41) by the truncated L2-norm ‖ · ‖2,t.

Remark C.1 (Ill-posedness is preserved by norm truncation). Under Assumptions 1 and 2, the

integral operator T satisfies (41). Here we demonstrate that, in many cases, and in particular

in all severely ill-posed cases, (41) continues to hold if we replace the L2-norm ‖ · ‖2 by the

truncated L2-norm ‖ · ‖2,t in the numerator of the left-hand side of (41), that is, there exists a

sequence {lk, k ≥ 1} in L2[0, 1] such that

‖lk‖2,t
‖T lk‖2

→∞ as k →∞. (42)

Indeed, under Assumptions 1 and 2, T is compact, and so the spectral theorem implies that

there exists a spectral decomposition of operator T , {(hj , ϕj), j ≥ 1}, where {hj , j ≥ 1} is an

orthonormal basis of L2[0, 1] and {ϕj , j ≥ 1} is a decreasing sequence of positive numbers such

that ϕj → 0 as j →∞, and ‖Thj‖2 = ϕj‖hj‖2 = ϕj . Also, Lemma I.2 shows that if {hj , j ≥ 1}
is an orthonormal basis in L2[0, 1], then for any α > 0, ‖hj‖2,t > j−1/2−α for infinitely many j,

and so there exists a subsequence {hjk , k ≥ 1} such that ‖hjk‖2,t > jk
−1/2−α. Therefore, under

a weak condition that j1/2+αϕj → 0 as j →∞, using ‖hjk‖2 = 1 for all k ≥ 1, we conclude that

for the subsequence lk = hjk ,

‖lk‖2,t
‖T lk‖2

≥ ‖hjk‖2
jk

1/2+α‖Thjk‖2
=

1

jk
1/2+αϕjk

→∞ as k →∞
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leading to (42). Note also that the condition that j1/2+αϕj → 0 as j → ∞ necessarily holds

if there exists a constant c > 0 such that ϕj ≤ e−cj for all large j, that is, if the problem is

severely ill-posed. Thus, under our Assumptions 1 and 2, the restriction in Lemma A.1 that h

belongs to the spaceM of monotone functions in L2[0, 1] plays a crucial role for the result (19)

to hold. On the other hand, whether the result (19) can be obtained for all h ∈ M without

imposing our monotone IV Assumption 1 appears to be an open (and interesting) question. �

Remark C.2 (Severe ill-posedness is preserved by norm truncation). One might wonder whether

our monotone IV Assumption 1 excludes all severely ill-posed problems, and whether the norm

truncation significantly changes these problems. Here we show that there do exist severely ill-

posed problems that satisfy our monotone IV Assumption 1, and also that severely ill-posed

problems remain severely ill-posed even if we replace the L2-norm ‖ · ‖2 by the truncated L2-

norm ‖ · ‖2,t. Indeed, consider Example C.1 above. Because, in this example, the pair (X,W )

is a transformation of the normal distribution, it is well known that the integral operator T in

this example has singular values decreasing exponentially fast. More specifically, the spectral

decomposition {(hk, ϕk), k ≥ 1} of the operator T satisfies ϕk = ρk for all k and some ρ < 1.

Hence,

‖hk‖2
‖Thk‖2

=

(
1

ρ

)k
.

Since (1/ρ)k → ∞ as k → ∞ exponentially fast, this example leads to a severely ill-posed

problem. Moreover, by Lemma I.2, for any α > 0 and ρ′ ∈ (ρ, 1),

‖hk‖2,t
‖Thk‖2

>
1

k1/2+α

(
1

ρ

)k
≥
(

1

ρ′

)k
for infinitely many k. Thus, replacing the L2 norm ‖ · ‖2 by the truncated L2 norm ‖ · ‖2,t
preserves the severe ill-posedness of the problem. However, it follows from Lemma A.1 that

uniformly over all h ∈ M, ‖h‖2,t/‖Th‖2 ≤ C̄. Therefore, in this example, as well as in all

other severely ill-posed problems satisfying Assumptions 1 and 2, imposing monotonicity on the

function h ∈ L2[0, 1] significantly changes the properties of the ratio ‖h‖2,t/‖Th‖2. �

Remark C.3 (Monotone IV assumption does not imply control function approach). Our mono-

tone IV Assumption 1 does not imply the applicability of a control function approach to the

estimation of the function g. Consider Example C.2 above. In this example, the relationship

between X and W has a two-dimensional vector (U1, U2) of unobserved heterogeneity. There-

fore, by Proposition 4 of Kasy (2011), there does not exist any control function C : [0, 1]2 → R
such that (i) C is invertible in its second argument, and (ii) X is independent of ε conditional

on V = C(X,W ). As a consequence, our monotone IV Assumption 1 does not imply any of

the existing control function conditions such as those in Newey, Powell, and Vella (1999) and

Imbens and Newey (2009), for example.2 Since multidimensional unobserved heterogeneity is

2It is easy to show that the existence of a control function does not imply our monotone IV condition either,

so our and the control function approach rely on conditions that are non-nested.
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common in economic applications (see Imbens (2007), Kasy (2014), and Hoderlein, Holzmann,

Kasy, and Meister (2016)), we view our approach to avoiding ill-posedness as complementary to

the control function approach. �

D Discussion of Theorem 2

D.1 Asymptotic Equivalence of Estimators for Strictly Increasing Functions

If the function g is strictly increasing and the sample size n is sufficiently large, then the con-

strained estimator ĝc coincides with the unconstrained estimator ĝu, and the two estimators

therefore share the same rate of convergence. The following lemma is proven in the supplement

to the main text.

Lemma D.1 (Asymptotic equivalence of constrained and unconstrained estimators). Let As-

sumptions 2 and 4-8 be satisfied. In addition, assume that g is continuously differentiable

and Dg(x) ≥ cg for all x ∈ [0, 1] and some constant cg > 0. If we have τ2
nξ

2
n log n/n → 0,

supx∈[0,1] ‖Dp(x)‖(τn(K/n)1/2 + K−s) → 0, and supx∈[0,1] |Dg(x) − Dgn(x)| → 0 as n → ∞,

then

P
(
ĝc(x) = ĝu(x) for all x ∈ [0, 1]

)
→ 1 as n→∞. (43)

The result in Lemma D.1 is similar to that in Theorem 1 of Mammen (1991), which shows

equivalence, in the sense of (43), of the constrained and unconstrained estimators of conditional

mean functions. Lemma D.1 implies that imposing the monotonicity constraint cannot lead to

improvements in the rate of convergence of the estimator if g is strictly increasing. However,

the result in Lemma D.1 is asymptotic and does not rule out significant performance gains in

finite samples, which we find in our simulations and in Theorem 2.

D.2 Fast Convergence Rate Under Local-to-Flat Asymptotics

The following corollary is a direct consequence of Theorem 2.

Corollary D.1 (Fast convergence rate of the constrained estimator under local asymptotics).

Consider the triangular array asymptotics where the data generating process, including the func-

tion g, is allowed to vary with n. Let Assumptions 1-8 be satisfied with the same constants

for all n. In addition, assume that ξ2
n ≤ CξK for some 0 < Cξ < ∞ and K log n/n → 0. If

‖Dg‖∞ = O((K log n/n)1/2), then

‖ĝc − g‖2,t = Op((K log n/n)1/2 +K−s). (44)

In particular, if ‖Dg‖∞ = O(n−s/(1+2s)
√

log n) and K = Kn = CKn
1/(1+2s) for some 0 < CK <

∞, then

‖ĝc − g‖2,t = Op(n
−s/(1+2s)

√
log n).
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This result means that the constrained estimator ĝc is able to recover regression functions

in the shrinking neighborhood of constant functions at a fast polynomial rate. Notice that the

neighborhood of functions g that satisfy ‖Dg‖∞ = O((K log n/n)1/2) is shrinking at a slow rate

because K →∞, in particular the rate is much slower than n−1/2. Therefore, in finite samples,

we expect the estimator to perform well for a wide range of (non-constant) regression functions

g as long as the function g is not too steep relative to the sample size.

D.3 Remarks

Remark D.1 (On robustness of the constrained estimator). Notice that the fast convergence

rates in the local asymptotics derived in Corollary D.1 are obtained under two monotonicity con-

ditions, Assumptions 1 and 3, but the estimator imposes only the monotonicity of the regression

function, not that of the first stage. Therefore, our proposed constrained estimator consistently

estimates the regression function g even when the monotone IV assumption is violated. �

Remark D.2 (Imposing Monotonicity by Re-arrangement). Chernozhukov, Fernández-Val, and

Galichon (2009) show that re-arranging any unconstrained estimator so that it becomes mono-

tone decreases the estimation error of the estimator. However, their argument does not quantify

this improvement, so that it does not seem possible to conclude from their argument whether

and when the improvement is large, even qualitatively. In contrast, the main contribution of

our paper is to show that enforcing the monotonicity constraint in the NPIV model yields sub-

stantial performance improvements even in large samples and for steep regression functions g as

long as the NPIV model is severely ill-posed. �

Remark D.3 (Estimating partially flat functions). Since the inversion of the operator T is a

global inversion in the sense that the resulting estimators ĝc(x) and ĝu(x) depend not only on

the shape of g(x) locally at x, but on the shape of g over the whole domain, we do not expect

convergence rate improvements from imposing monotonicity when the function g is partially

flat. However, we leave the question about potential improvements from imposing monotonicity

in this case for future research. �

Remark D.4 (Computational aspects). The implementation of the constrained estimator in

(14) is particularly simple when the basis vector p(x) consists of polynomials or B-splines of order

2. In that case, Dp(x) is linear in x and, therefore, the constraint Dp(x)′b ≥ 0 for all x ∈ [0, 1]

needs to be imposed only at the knots or endpoints of [0, 1], respectively. The estimator β̂c

thus minimizes a quadratic objective function subject to a (finite-dimensional) linear inequality

constraint. When the order of the polynomials or B-splines in p(x) is larger than 2, imposing

the monotonicity constraint is slightly more complicated, but it can still be transformed into

a finite-dimensional constraint using a representation of non-negative polynomials as a sum of

squared polynomials:3 one can represent any non-negative polynomial f : R → R as a sum of

squares of polynomials (see the survey by Reznick (2000), for example), i.e. f(x) = p̃(x)′Mp̃(x)

3We thank A. Belloni for pointing out this possibility.
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where p̃(x) is the vector of monomials up to some order and M a matrix of coefficients. Letting

f(x) = Dp(x)′b, our monotonicity constraint f(x) ≥ 0 can then be written as p̃(x)′Mp̃(x) ≥ 0

for some matrix M that depends on b. This condition is equivalent to requiring the matrix

M to be positive semi-definite. β̂c thus minimizes a quadratic objective function subject to a

(finite-dimensional) semi-definiteness constraint.

For polynomials defined not over whole R but only over a compact sub-interval of R, one can

use the same reasoning as above together with a result attributed to M. Fekete (see Powers and

Reznick (2000), for example): for any polynomial f(x) with f(x) ≥ 0 for x ∈ [−1, 1], there are

polynomials f1(x) and f2(x), non-negative over whole R, such that f(x) = f1(x)+(1−x2)f2(x).

Letting again f(x) = Dp(x)′b, one can therefore impose our monotonicity constraint by imposing

the positive semi-definiteness of the coefficients in the sums-of-squares representation of f1(x)

and f2(x). �

Remark D.5 (Penalization and shape constraints). Recall that the estimators ĝu and ĝc require

setting the constraint ‖b‖ ≤ Cb in the optimization problems (13) and (14). In practice, this

constraint, or similar constraints in terms of Sobolev norms, which also impose bounds on

derivatives of g, are typically not enforced in the implementation of an NPIV estimator. Horowitz

(2012) and Horowitz and Lee (2012), for example, observe that imposing the constraint does

not seem to have an effect in their simulations. On the other hand, especially when one includes

many series terms in the computation of the estimator, Blundell, Chen, and Kristensen (2007)

and Gagliardini and Scaillet (2012), for example, argue that penalizing the norm of g and of its

derivatives may stabilize the estimator by reducing its variance. In this sense, penalizing the

norm of g and of its derivatives may have a similar effect as imposing monotonicity. However,

there are at least two important differences between penalization and imposing monotonicity.

First, penalization increases bias of the estimators. In fact, especially in severely ill-posed

problems, even small amount of penalization may lead to large bias (otherwise severely ill-posed

problems could lead to estimators with fast convergence rates). In contrast, the monotonicity

constraint on the estimator does not increase bias much when the function g itself satisfies

the monotonicity constraint. Second, penalization requires selecting a tuning parameter that

governs the strength of penalization, which is a difficult statistical problem. In contrast, imposing

monotonicity does not require such choices and can often be motivated directly from economic

theory. �

E Identification Bounds under Monotonicity

In Section 3, we derived non-asymptotic error bounds on the constrained estimator in the NPIV

model (1) assuming that g is point-identified, or equivalently, that the linear operator T is

invertible. Newey and Powell (2003) linked point-identification of g to completeness of the

conditional distribution of X given W , but this completeness condition has been argued to be

strong (Santos (2012)) and non-testable (Canay, Santos, and Shaikh (2013)). In this section,
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we therefore discard the completeness condition and explore the identification power of our

monotonicity conditions, which appear natural in many economic applications.

By a slight abuse of notation, we define the sign of the slope of a differentiable, monotone

function f ∈M by

sign(Df) :=


1, Df(x) ≥ 0 ∀x ∈ [0, 1] and Df(x) > 0 for some x ∈ [0, 1]

0, Df(x) = 0 ∀x ∈ [0, 1]

−1, Df(x) ≤ 0 ∀x ∈ [0, 1] and Df(x) < 0 for some x ∈ [0, 1]

and the sign of a scalar b by sign(b) := 1{b > 0} − 1{b < 0}. We first show that if the function

g is monotone, the sign of its slope is identified under our monotone IV assumption (and some

other technical conditions):

Theorem E.1 (Identification of the sign of the slope). Suppose Assumptions 1 and 2 hold and

fX,W (x,w) > 0 for all (x,w) ∈ (0, 1)2. If g is monotone and continuously differentiable, then

sign(Dg) is identified.

This theorem shows that, under certain regularity conditions, the monotone IV assumption

and monotonicity of the regression function g imply identification of the sign of the regression

function’s slope, even though the regression function itself is, in general, not point-identified.

This result is useful because in many empirical applications it is natural to assume a monotone

relationship between outcome variable Y and the endogenous regressor X, given by the function

g, but the main question of interest concerns not the exact shape of g itself, but whether the

effect of X on Y , given by the slope of g, is positive, zero, or negative. The discussions in

Abrevaya, Hausman, and Khan (2010) and Kline (2016), for example, provide examples and

motivations for why one may be interested in the sign of a marginal effect.

Remark E.1 (A test for the sign of the slope of g). In fact, Theorem E.1 yields a surprisingly

simple way to test the sign of the slope of the function g. Indeed, the proof of Theorem E.1

reveals that g is increasing, constant, or decreasing if the function w 7→ E[Y |W = w] is increasing,

constant, or decreasing, respectively. By Chebyshev’s association inequality (Lemma I.1), the

latter assertions are equivalent to the coefficient β in the linear regression model

Y = α+ βW + U, E[UW ] = 0 (45)

being positive, zero, or negative since sign(β) = sign(cov(W,Y )) and

cov(W,Y ) = E[WY ]− E[W ]E[Y ]

= E[WE[Y |W ]]− E[W ]E[E[Y |W ]] = cov(W,E[Y |W ])

by the law of iterated expectations. Therefore, under our conditions, hypotheses about the

sign of the slope of the function g can be tested by testing the corresponding hypotheses about

the sign of the slope coefficient β in the linear regression model (45). In particular, under our

two monotonicity assumptions, one can test the hypothesis of “no effect” of X on Y , i.e. that

8



g is a constant, by testing whether β = 0 or not using the usual t-statistic. The asymptotic

theory for this statistic is exactly the same as in the standard regression case with exogenous

regressors, yielding the standard normal limiting distribution and, therefore, completely avoiding

the ill-posed inverse problem of recovering g. �

It turns out that our two monotonicity assumptions possess identifying power even beyond

the slope of the regression function.

Definition E.1 (Identified set). We say that two functions g′, g′′ ∈ L2[0, 1] are observationally

equivalent if E[g′(X)− g′′(X)|W ] = 0. The identified set Θ is defined as the set of all functions

g′ ∈M that are observationally equivalent to the true function g satisfying (1).

The following theorem provides necessary conditions for observational equivalence.

Theorem E.2 (Identification bounds). Let Assumptions 1 and 2 be satisfied, and let g′, g′′ ∈
L2[0, 1]. Further, let C̄ := C1/cp where C1 := (x2 − x1)1/2 /min{x1 − δ2, 1 − δ2 − x2} and

cp := min{1−w2, w1}min{(CF −1)/2, 1}cwcf/4. If there exists a function h ∈ L2[0, 1] such that

g′ − g′′ + h ∈M and ‖h‖2,t + C̄‖T‖2‖h‖2 < ‖g′ − g′′‖2,t, then g′ and g′′ are not observationally

equivalent.

Under Assumption 3 that g is increasing, Theorem E.2 suggests the construction of a set Θ′

that includes the identified set Θ by Θ′ := M+\∆, where M+ := H(0) denotes all increasing

functions in M and

∆ :=
{
g′ ∈M+ : there exists h ∈ L2[0, 1] such that

g′ − g + h ∈M and ‖h‖2,t + C̄‖T‖2‖h‖2 < ‖g′ − g‖2,t
}
. (46)

We emphasize that ∆ is not empty, which means that our Assumptions 1–3 possess identifying

power leading to nontrivial bounds on g. Notice that the constant C̄ depends only on the

estimable quantities cw, cf , and CF from Assumptions 1–2, and on the known constants x1, x2,

w1, w2, and δ2. Therefore, the set Θ′ could, in principle, be estimated.

Remark E.2 (Further insight on identification bounds). It is possible to provide more insight

into which functions are in ∆ and thus not in Θ′. First, under the additional minor condition

that fX,W (x,w) > 0 for all (x,w) ∈ (0, 1)2, all functions in Θ′ have to intersect g; otherwise they

are not observationally equivalent to g. Second, for a given g′ ∈M+ and h ∈ L2[0, 1] such that

g′−g+h is monotone, the inequality in condition (46) is satisfied if ‖h‖2 is not too large relative

to ‖g′ − g‖2,t. In the extreme case, setting h = 0 shows that Θ′ does not contain elements g′

that disagree with g on [x1, x2] and such that g′ − g is monotone. More generally, Θ′ does not

contain elements g′ whose difference with g is too close to a monotone function. Therefore, for

example, functions g′ that are much steeper than g are excluded from Θ′. �
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F Additional Simulations

In this section, we report simulations for other choices of the parameters ρ and η, which gov-

ern the strength of the instrument and the degree of endogeneity, respectively. We vary the

parameters by setting ρ = 0.3 or 0.5 and η = 0.3 or 0.7. Tables 1–6 show the results.

G Gasoline Demand in the United States

In this section, we revisit the problem of estimating demand functions for gasoline in the United

States. Because of the dramatic changes in the oil price over the last few decades, understanding

the elasticity of gasoline demand is fundamental to evaluating tax policies. Consider the following

partially linear specification of the demand function:

Y = g(X,Z1) + γ′Z2 + ε, E[ε|W,Z1, Z2] = 0,

where Y denotes annual log-gasoline consumption of a household, X log-price of gasoline (average

local price), Z1 log-household income, Z2 are control variables (such as population density,

urbanization, and demographics), and W distance to major oil platform. We allow for price X

to be endogenous, but assume that (Z1, Z2) is exogenous. W serves as an instrument for price

by capturing transport cost and, therefore, shifting the cost of gasoline production. We use the

same sample of size 4, 812 from the 2001 National Household Travel Survey and the same control

variables Z2 as Blundell, Horowitz, and Parey (2012). More details can be found in their paper.

Moving away from constant price and income elasticities is likely very important as individ-

uals’ responses to price changes vary greatly with price and income level. Since economic theory

does not provide guidance on the functional form of g, finding an appropriate parametrization

is difficult. Hausman and Newey (1995) and Blundell, Horowitz, and Parey (2012), for exam-

ple, demonstrate the importance of employing flexible estimators of g that do not suffer from

misspecification bias due to arbitrary restrictions in the model. Blundell, Horowitz, and Parey

(2013) argue that prices at the local market level vary for several reasons and that they may

reflect preferences of the consumers in the local market. Therefore, one would expect prices X

to depend on unobserved factors in ε that determine consumption, rendering price an endoge-

nous variable. Furthermore, the theory of the consumer requires downward-sloping compensated

demand curves. Assuming a positive income derivative4 ∂g/∂z1, the Slutsky condition implies

that the uncompensated (Marshallian) demand curves are also downward-sloping, i.e. g(·, z1)

should be monotone for any z1, as long as income effects do not completely offset price effects.

Finally, we expect the cost shifter W to monotonically increase cost of producing gasoline and

thus satisfy our monotone IV condition. In conclusion, our constrained NPIV estimator appears

to be an attractive estimator of demand functions in this setting.

4Blundell, Horowitz, and Parey (2012) estimate this income derivative and do, in fact, find it to be positive

over the price range of interest.
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Constrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 7.33 4.46 13.19 17.54 4.46

n = 1, 000 6.46 2.07 9.40 11.33 2.07

n = 5, 000 5.74 0.50 2.97 5.36 0.50

n = 10, 000 5.66 0.34 1.48 3.70 0.34

n = 50, 000 5.58 0.09 0.38 2.39 0.09

n = 100, 000 5.57 0.04 0.19 1.98 0.04

n = 500, 000 5.56 0.01 0.08 0.48 0.01

Unconstrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 7.33 10.40 105.00 573.43 7.33

n = 1, 000 6.46 4.55 58.69 354.45 4.55

n = 5, 000 5.74 0.92 8.80 152.28 0.92

n = 10, 000 5.66 0.45 4.09 96.93 0.45

n = 50, 000 5.58 0.09 1.10 22.50 0.09

n = 100, 000 5.57 0.04 0.48 10.35 0.04

n = 500, 000 5.56 0.01 0.08 1.71 0.01

Ratio

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 1.00 0.43 0.13 0.03 0.61

n = 1, 000 1.00 0.45 0.16 0.03 0.45

n = 5, 000 1.00 0.54 0.34 0.04 0.54

n = 10, 000 1.00 0.75 0.36 0.04 0.75

n = 50, 000 1.00 1.00 0.34 0.11 1.00

n = 100, 000 1.00 1.00 0.40 0.19 1.00

n = 500, 000 1.00 1.00 0.96 0.28 1.00

Table 1: simulation results for the case g(x) = x2 +0.2x, ρ = 0.5, and η = 0.3. The top panel shows the MISE of

the constrained estimator ĝc, multiplied by 1000, as a function of n and K. The middle panel shows the MISE of

the unconstrained estimator ĝu, multiplied by 1000, as a function of n and K. Both in the top and in the middle

panels, the last column shows the minimal value of the MISE of the corresponding estimator optimized over K.

The bottom panel shows the ratio of the MISE of the constrained estimator to the MISE of the unconstrained

estimator as a function n and K. The last column of the bottom panel shows the ratio of the optimal value of

the MISE of the constrained estimator to the optimal value of the MISE of the unconstrained estimator.
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Constrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 9.32 13.06 26.14 39.35 9.32

n = 1, 000 7.48 6.32 23.72 34.13 6.32

n = 5, 000 5.94 1.40 10.65 13.77 1.40

n = 10, 000 5.75 0.81 8.62 9.85 0.81

n = 50, 000 5.59 0.29 2.51 5.36 0.29

n = 100, 000 5.57 0.26 1.46 4.48 0.26

n = 500, 000 5.56 0.05 0.36 3.16 0.05

Unconstrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 9.32 61.71 499.02 1036.88 9.32

n = 1, 000 7.48 31.47 325.31 904.59 7.48

n = 5, 000 5.94 6.23 168.48 516.09 5.94

n = 10, 000 5.75 2.72 107.17 574.64 2.72

n = 50, 000 5.59 0.52 26.89 320.54 0.52

n = 100, 000 5.57 0.29 11.77 229.12 0.29

n = 500, 000 5.56 0.05 1.98 129.61 0.05

Ratio

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 1.00 0.21 0.05 0.04 1.00

n = 1, 000 1.00 0.20 0.07 0.04 0.85

n = 5, 000 1.00 0.22 0.06 0.03 0.24

n = 10, 000 1.00 0.30 0.08 0.02 0.30

n = 50, 000 1.00 0.56 0.09 0.02 0.56

n = 100, 000 1.00 0.92 0.12 0.02 0.92

n = 500, 000 1.00 1.00 0.18 0.02 1.00

Table 2: simulation results for the case g(x) = x2 +0.2x, ρ = 0.3, and η = 0.7. The top panel shows the MISE of

the constrained estimator ĝc, multiplied by 1000, as a function of n and K. The middle panel shows the MISE of

the unconstrained estimator ĝu, multiplied by 1000, as a function of n and K. Both in the top and in the middle

panels, the last column shows the minimal value of the MISE of the corresponding estimator optimized over K.

The bottom panel shows the ratio of the MISE of the constrained estimator to the MISE of the unconstrained

estimator as a function n and K. The last column of the bottom panel shows the ratio of the optimal value of

the MISE of the constrained estimator to the optimal value of the MISE of the unconstrained estimator.
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Constrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 7.38 4.37 12.84 17.90 4.37

n = 1, 000 6.45 2.13 9.07 11.33 2.13

n = 5, 000 5.74 0.51 2.99 5.24 0.51

n = 10, 000 5.65 0.34 1.66 3.79 0.34

n = 50, 000 5.57 0.08 0.34 2.44 0.08

n = 100, 000 5.57 0.05 0.20 1.95 0.05

n = 500, 000 5.56 0.01 0.08 0.40 0.01

Unconstrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 7.38 10.21 110.96 552.21 7.38

n = 1, 000 6.45 4.76 61.47 403.53 4.76

n = 5, 000 5.74 0.93 7.97 167.60 0.93

n = 10, 000 5.65 0.44 4.64 107.45 0.44

n = 50, 000 5.57 0.08 1.07 25.08 0.08

n = 100, 000 5.57 0.05 0.46 9.28 0.05

n = 500, 000 5.56 0.01 0.09 1.63 0.01

Ratio

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 1.00 0.43 0.12 0.03 0.59

n = 1, 000 1.00 0.45 0.15 0.03 0.45

n = 5, 000 1.00 0.54 0.37 0.03 0.54

n = 10, 000 1.00 0.77 0.36 0.04 0.77

n = 50, 000 1.00 1.00 0.32 0.10 1.00

n = 100, 000 1.00 1.00 0.44 0.21 1.00

n = 500, 000 1.00 1.00 0.96 0.25 1.00

Table 3: simulation results for the case g(x) = x2 +0.2x, ρ = 0.5, and η = 0.7. The top panel shows the MISE of

the constrained estimator ĝc, multiplied by 1000, as a function of n and K. The middle panel shows the MISE of

the unconstrained estimator ĝu, multiplied by 1000, as a function of n and K. Both in the top and in the middle

panels, the last column shows the minimal value of the MISE of the corresponding estimator optimized over K.

The bottom panel shows the ratio of the MISE of the constrained estimator to the MISE of the unconstrained

estimator as a function n and K. The last column of the bottom panel shows the ratio of the optimal value of

the MISE of the constrained estimator to the optimal value of the MISE of the unconstrained estimator.
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Constrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 8.12 5.36 9.66 13.58 5.36

n = 1, 000 7.26 2.77 5.67 9.63 2.77

n = 5, 000 6.55 1.18 1.81 4.74 1.18

n = 10, 000 6.46 1.03 1.43 3.51 1.03

n = 50, 000 6.37 0.87 0.66 1.45 0.66

n = 100, 000 6.36 0.86 0.42 0.88 0.42

n = 500, 000 6.35 0.85 0.08 0.48 0.08

Unconstrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 8.12 11.43 105.00 563.75 8.12

n = 1, 000 7.26 5.55 58.69 353.28 5.55

n = 5, 000 6.55 1.70 8.80 156.02 1.70

n = 10, 000 6.46 1.29 4.09 95.33 1.29

n = 50, 000 6.37 0.89 1.10 22.51 0.89

n = 100, 000 6.36 0.84 0.48 10.10 0.48

n = 500, 000 6.35 0.81 0.08 1.75 0.08

Ratio

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 1.00 0.47 0.09 0.02 0.66

n = 1, 000 1.00 0.50 0.10 0.03 0.50

n = 5, 000 1.00 0.69 0.21 0.03 0.69

n = 10, 000 1.00 0.80 0.35 0.04 0.80

n = 50, 000 1.00 0.98 0.60 0.06 0.74

n = 100, 000 1.00 1.02 0.87 0.09 0.87

n = 500, 000 1.00 1.05 1.00 0.27 1.00

Table 4: simulation results for the case g(x) = 2(x− 1/2)2+ + 0.5x, ρ = 0.5, and η = 0.3. The top panel shows

the MISE of the constrained estimator ĝc, multiplied by 1000, as a function of n and K. The middle panel shows

the MISE of the unconstrained estimator ĝu, multiplied by 1000, as a function of n and K. Both in the top

and in the middle panels, the last column shows the minimal value of the MISE of the corresponding estimator

optimized over K. The bottom panel shows the ratio of the MISE of the constrained estimator to the MISE of

the unconstrained estimator as a function n and K. The last column of the bottom panel shows the ratio of the

optimal value of the MISE of the constrained estimator to the optimal value of the MISE of the unconstrained

estimator.
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Constrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 10.19 14.21 18.48 27.35 10.19

n = 1, 000 8.28 7.27 13.89 20.89 7.27

n = 5, 000 6.76 2.10 7.48 10.45 2.10

n = 10, 000 6.57 1.49 4.10 7.93 1.49

n = 50, 000 6.38 0.95 1.52 4.94 0.95

n = 100, 000 6.37 0.90 1.36 4.62 0.90

n = 500, 000 6.36 0.86 0.67 2.58 0.67

Unconstrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 10.19 60.82 499.02 1053.94 10.19

n = 1, 000 8.28 32.95 325.31 927.74 8.28

n = 5, 000 6.76 6.88 168.48 523.23 6.76

n = 10, 000 6.57 3.52 107.17 577.86 3.52

n = 50, 000 6.38 1.32 26.89 318.74 1.32

n = 100, 000 6.37 1.11 11.77 229.59 1.11

n = 500, 000 6.36 0.86 1.98 132.66 0.86

Ratio

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 1.00 0.23 0.04 0.03 1.00

n = 1, 000 1.00 0.22 0.04 0.02 0.88

n = 5, 000 1.00 0.31 0.04 0.02 0.31

n = 10, 000 1.00 0.42 0.04 0.01 0.42

n = 50, 000 1.00 0.72 0.06 0.02 0.72

n = 100, 000 1.00 0.81 0.12 0.02 0.81

n = 500, 000 1.00 1.00 0.34 0.02 0.79

Table 5: simulation results for the case g(x) = 2(x− 1/2)2+ + 0.5x, ρ = 0.3, and η = 0.7. The top panel shows

the MISE of the constrained estimator ĝc, multiplied by 1000, as a function of n and K. The middle panel shows

the MISE of the unconstrained estimator ĝu, multiplied by 1000, as a function of n and K. Both in the top

and in the middle panels, the last column shows the minimal value of the MISE of the corresponding estimator

optimized over K. The bottom panel shows the ratio of the MISE of the constrained estimator to the MISE of

the unconstrained estimator as a function n and K. The last column of the bottom panel shows the ratio of the

optimal value of the MISE of the constrained estimator to the optimal value of the MISE of the unconstrained

estimator.

15



Constrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 8.15 5.34 9.59 13.52 5.34

n = 1, 000 7.26 2.91 5.96 9.74 2.91

n = 5, 000 6.54 1.20 1.84 4.67 1.20

n = 10, 000 6.45 1.04 1.48 3.75 1.04

n = 50, 000 6.37 0.87 0.61 1.33 0.61

n = 100, 000 6.36 0.86 0.42 0.83 0.42

n = 500, 000 6.35 0.85 0.09 0.46 0.09

Unconstrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 8.15 10.90 110.96 543.05 8.15

n = 1, 000 7.26 5.80 61.47 416.74 5.80

n = 5, 000 6.54 1.77 7.97 170.99 1.77

n = 10, 000 6.45 1.23 4.64 105.77 1.23

n = 50, 000 6.37 0.89 1.07 24.87 0.89

n = 100, 000 6.36 0.85 0.46 9.24 0.46

n = 500, 000 6.35 0.81 0.09 1.68 0.09

Ratio

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 1.00 0.49 0.09 0.02 0.65

n = 1, 000 1.00 0.50 0.10 0.02 0.50

n = 5, 000 1.00 0.68 0.23 0.03 0.68

n = 10, 000 1.00 0.85 0.32 0.04 0.85

n = 50, 000 1.00 0.98 0.57 0.05 0.69

n = 100, 000 1.00 1.01 0.91 0.09 0.91

n = 500, 000 1.00 1.05 1.00 0.28 1.00

Table 6: simulation results for the case g(x) = 2(x− 1/2)2+ + 0.5x, ρ = 0.5, and η = 0.7. The top panel shows

the MISE of the constrained estimator ĝc, multiplied by 1000, as a function of n and K. The middle panel shows

the MISE of the unconstrained estimator ĝu, multiplied by 1000, as a function of n and K. Both in the top

and in the middle panels, the last column shows the minimal value of the MISE of the corresponding estimator

optimized over K. The bottom panel shows the ratio of the MISE of the constrained estimator to the MISE of

the unconstrained estimator as a function n and K. The last column of the bottom panel shows the ratio of the

optimal value of the MISE of the constrained estimator to the optimal value of the MISE of the unconstrained

estimator.
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We consider three benchmark estimators. First, we compute the unconstrained nonpara-

metric (“uncon. NP”) series estimator of the regression of Y on X and Z1, treating price as

exogenous. As in Blundell, Horowitz, and Parey (2012), we accommodate the high-dimensional

vector of additional, exogenous covariates Z2 by (i) estimating γ by Robinson (1988)’s proce-

dure, (ii) then removing these covariates from the outcome, and (iii) estimating g by regressing

the adjusted outcomes on X and Z1. The second benchmark estimator (“con. NP”) repeats

the same steps (i)–(iii) except that it imposes monotonicity (in price) of g in steps (i) and (iii).

The third benchmark estimator is the unconstrained NPIV estimator (“uncon. NPIV”) that

accounts for the covariates Z2 in similar fashion as the first, unconstrained nonparametric esti-

mator, except that (i) and (iii) employ NPIV estimators that impose additive separability and

linearity in Z2.

The fourth estimator we consider is the constrained NPIV estimator (“con. NPIV”) that

we compare to the three benchmark estimators. We allow for the presence of the covariates Z2

in the same fashion as the unconstrained NPIV estimator except that, in steps (i) and (iii), we

impose monotonicity in price.

We report results for the following choice of bases. All estimators employ a quadratic B-spline

basis with 3 knots for price X and a cubic B-spline with 10 knots for the instrument W . Denote

these two bases by P and Q, using the same notation as in Section 3. In step (i), the NPIV

estimators include the additional exogenous covariates (Z1, Z2) in the respective bases for X and

W , so they use the estimator defined in Section 3 except that the bases P and Q are replaced

by P̃ := [P,P× Z1,Z2] and Q̃ := [Q,Q× (Z1,Z2)], respectively, where Zk := (Zk,1, . . . , Zk,n)′,

k = 1, 2, stacks the observations i = 1, . . . , n and P × Z1 denotes the tensor product of the

columns of the two matrices. Since, in the basis P̃, we include interactions of P with Z1, but

not with Z2, the resulting estimator allows for a nonlinear, nonseparable dependence of Y on

X and Z1, but imposes additive separability in Z2. The conditional expectation of Y given W ,

Z1, and Z2 does not have to be additively separable in Z2, so that, in the basis Q̃, we include

interactions of Q with both Z1 and Z2.5

We estimated the demand functions for many different combinations of the order of B-spline

for W , the number of knots in both bases, and even with various penalization terms (as discussed

in Remark D.5). While the shape of the unconstrained NPIV estimate varied slightly across

these different choices of tuning parameters (mostly near the boundary of the support of X),

the constrained NPIV estimator did not exhibit any visible changes at all.

Figure 2 shows a nonparametric kernel estimate of the conditional distribution of the price X

given the instrument W . Overall the graph indicates an increasing relationship between the two

variables as required by our stochastic dominance condition (7). We formally test this monotone

IV assumption by applying the test proposed in Chetverikov and Wilhelm (2017). We find a

test statistic value of 0.139 and 95%-critical value of 1.720.6 Therefore, we fail to reject the

5Notice that P and Q include constant terms so it is not necessary to separately include Zk in addition to its

interactions with P and Q, respectively.
6The critical value is computed from 1, 000 bootstrap samples, using the bandwidth set Bn =

17



monotone IV assumption.

Figure 3 shows the estimates of the demand function at three income levels, at the lower

quartile ($42, 500), the median ($57, 500), and the upper quartile ($72, 500). The area shaded in

grey represents the 90% uniform confidence bands around the unconstrained NPIV estimator as

proposed in Horowitz and Lee (2012).7 The black lines correspond to the estimators assuming

exogeneity of price and the red lines to the NPIV estimators that allow for endogeneity of price.

The dashed black line shows the kernel estimate of Blundell, Horowitz, and Parey (2012) and the

solid black line the corresponding series estimator that imposes monotonicity. The dashed and

solid red lines similarly depict the unconstrained and constrained NPIV estimators, respectively.

All estimates show an overall decreasing pattern of the demand curves, but the two uncon-

strained estimators are both increasing over some parts of the price domain. We view these

implausible increasing parts as finite-sample phenomena that arise because the unconstrained

nonparametric estimators are too imprecise. The wide confidence bands of the unconstrained

NPIV estimator are consistent with this view. Hausman and Newey (1995) and Horowitz and

Lee (2012) find similar anomalies in their nonparametric estimates, assuming exogenous prices.

Unlike the unconstrained estimates, our constrained NPIV estimates are downward-sloping ev-

erywhere and smoother. They lie within the 90% uniform confidence bands of the unconstrained

estimator so that the monotonicity constraint appears compatible with the data.

The two constrained estimates are very similar, indicating that endogeneity of prices may

not be important in this problem, but they are both significantly flatter than the unconstrained

estimates across all three income groups, which implies that households appear to be less sensitive

to price changes than the unconstrained estimates suggest. The small maximum slope of the

constrained NPIV estimator also suggests that the error bound in Theorem 2 may be small and

therefore we expect the constrained NPIV estimate to be precise for this data set.

{2, 1, 0.5, 0.25, 0.125, 0.0625}, and a kernel estimator for F̂X|W with bandwidth 0.3 which produces the estimate

in Figure 2.
7Critical values are computed from 1, 000 bootstrap samples and the bands are computed on a grid of 100

equally-spaced points in the support of the data for X.
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Figure 2: Nonparametric kernel estimate of the conditional cdf FX|W (x|w).

0.20 0.25 0.30 0.35

6.
6

6.
8

7.
0

7.
2

7.
4

7.
6

7.
8

lower income group

log price

lo
g 

de
m

an
d

uncon. NPIV
con. NPIV
uncon. NP
con. NP

0.20 0.25 0.30 0.35

6.
6

6.
8

7.
0

7.
2

7.
4

7.
6

7.
8

middle income group

log price

lo
g 

de
m

an
d

uncon. NPIV
con. NPIV
uncon. NP
con. NP

0.20 0.25 0.30 0.35

6.
6

6.
8

7.
0

7.
2

7.
4

7.
6

7.
8

upper income group

log price

lo
g 

de
m

an
d

uncon. NPIV
con. NPIV
uncon. NP
con. NP

Figure 3: Estimates of g(x, z1) plotted as a function of price x for z1 fixed at three income levels.
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H Proof of Theorems E.1 and E.2

LetM↑ be the set of all functions inM that are increasing but not constant. Similarly, letM↓
be the set of all functions inM that are decreasing but not constant, and letM→ be the set of

all constant functions in M.

Proof of Theorem E.1. Assume that g is increasing but not constant, that is, g ∈ M↑. Define

M(w) := E[Y |W = w], w ∈ [0, 1]. Below we show that M ∈ M↑. To prove it, observe that, as

in the proof of Lemma A.2, integration by parts gives

M(w) = g(1)−
∫ 1

0
Dg(x)FX|W (x|w)dx,

and so Assumption 1 implies that M is increasing. Let us show that M is not constant. To this

end, note that

M(w2)−M(w1) =

∫ 1

0
Dg(x)(FX|W (x|w1)− FX|W (x|w2))dx.

Since g is not constant and is continuously differentiable, there exists x̄ ∈ (0, 1) such that

Dg(x̄) > 0. Also, since 0 < δ1 < 1− δ1 < 1 (the constant δ1 appears in Assumption 1), we have

x̄ ∈ (0, 1− δ1) or x̄ ∈ (δ1, 1). In the first case,

M(w2)−M(w1) ≥
∫ 1−δ1

0
(CF − 1)Dg(x)FX|W (x|w2)dx > 0.

In the second case,

M(w2)−M(w1) ≥
∫ 1

δ1

(CF − 1)Dg(x)(1− FX|W (x|w1))dx > 0.

Thus, M is not constant, and so M ∈ M↑. Similarly, one can show that if g ∈ M↓, then

M ∈ M↓, and if g ∈ M→, then M ∈ M→. However, the distribution of the triple (Y,X,W )

uniquely determines whether M ∈M↑,M↓, orM→, and so it also uniquely determines whether

g ∈M↑, M↓, or M→ This completes the proof. Q.E.D.

Proof of Theorem E.2. Suppose g′ and g′′ are observationally equivalent. Then ‖T (g′− g′′)‖2 =

0. On the other hand, since 0 ≤ ‖h‖2,t + C̄‖T‖2‖h‖2 < ‖g′ − g′′‖2,t, there exists α ∈ (0, 1)

such that ‖h‖2,t + C̄‖T‖2‖h‖2 ≤ α‖g′− g′′‖2,t. Therefore, by Lemma A.3, ‖T (g′− g′′)‖2 ≥ ‖g′−
g′′‖2,t(1−α)/C̄ > 0, which is a contradiction. This completes the proof of the theorem. Q.E.D.

I Technical tools

Lemma I.1. Let W be a random variable with the density function bounded below from zero

on its support [0, 1], and let M : [0, 1] → R be a monotone function. If M is constant, then

cov(W,M(W )) = 0. If M is increasing in the sense that there exist 0 < w1 < w2 < 1 such that

M(w1) < M(w2), then cov(W,M(W )) > 0.
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Proof. The first claim is trivial. The second claim follows by introducing an independent copy

W ′ of the random variable W , and rearranging the inequality

E[(M(W )−M(W ′))(W −W ′)] > 0,

which holds for increasing M since (M(W )−M(W ′))(W −W ′) ≥ 0 almost surely and (M(W )−
M(W ′))(W −W ′) > 0 with strictly positive probability. This completes the proof of the lemma.

Q.E.D.

Lemma I.2. For any orthonormal basis {hj , j ≥ 1} in L2[0, 1], any 0 ≤ x1 < x2 ≤ 1, and any

α > 0,

‖hj‖2,t =

(∫ x2

x1

h2
j (x)dx

)1/2

> j−1/2−α

for infinitely many j.

Proof. Fix M ∈ N and consider any partition x1 = t0 < t1 < · · · < tM = x2. Further, fix

m = 1, . . . ,M and consider the function

h(x) =

 1√
tm−tm−1

x ∈ (tm−1, tm],

0, x /∈ (tm−1, tm].

Note that ‖h‖2 = 1, so that

h =

∞∑
j=1

βjhj in L2[0, 1], βj :=

∫ tm
tm−1

hj(x)dx

(tm − tm−1)1/2
, and

∞∑
j=1

β2
j = 1.

Therefore, by the Cauchy-Schwarz inequality,

1 =
∞∑
j=1

β2
j =

1

tm − tm−1

∞∑
j=1

(∫ tm

tm−1

hj(x)dx

)2

≤
∞∑
j=1

∫ tm

tm−1

(hj(x))2dx.

Hence,
∑∞

j=1 ‖hj‖22,t ≥M . Since M is arbitrary, we obtain
∑∞

j=1 ‖hj‖22,t =∞, and so for any J ,

there exists j > J such that ‖hj‖2,t > j−1/2−α. Otherwise, we would have
∑∞

j=1 ‖hj‖22,t < ∞.

This completes the proof of the lemma. Q.E.D.

Lemma I.3. Let (X,W ) be a pair of random variables defined as in Example C.1. Then

Assumptions 1 and 2 of Section 2 are satisfied with 0 < δ1 < 1 − δ1 < 1, δ1 = δ2, and

0 < w1 < w2 < 1.

Proof. As noted in Example C.1, we have

X = Φ(ρΦ−1(W ) + (1− ρ2)1/2U)

where Φ(x) is the distribution function of a N(0, 1) random variable and U is a N(0, 1) random

variable that is independent of W . Therefore, the conditional distribution function of X given

W is

FX|W (x|w) := Φ

(
Φ−1(x)− ρΦ−1(w)√

1− ρ2

)
.
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Since the function w 7→ FX|W (x|w) is decreasing for all x ∈ (0, 1), condition (7) of Assumption 1

follows. Further, to prove condition (8) of Assumption 1, it suffices to show that

∂ logFX|W (x|w)

∂w
≤ cF (47)

for some constant cF < 0, all x ∈ (0, 1−δ1), and all w ∈ (w1, w2) because, for every x ∈ (0, 1−δ1),

there exists w̄ ∈ (w1, w2) such that

log

(
FX|W (x|w1)

FX|W (x|w2)

)
= logFX|W (x|w1)− logFX|W (x|w2) = −(w2 − w1)

∂ logFX|W (x|w̄)

∂w
.

Therefore, ∂ logFX|W (x|w)/∂w ≤ cF < 0 for all x ∈ (0, 1− δ1) and w ∈ (w1, w2) implies

FX|W (x|w1)

FX|W (x|w2)
≥ e−cF (w2−w1) > 1

for all x ∈ (0, 1− δ1). To show (47), observe that

∂ logFX|W (x|w)

∂w
= − ρ√

1− ρ2

φ(y)

Φ(y)

1

φ(Φ−1(w))
≤ −

√
2πρ√

1− ρ2

φ(y)

Φ(y)
(48)

where y := (Φ−1(x) − ρΦ−1(w))/(1 − ρ2)1/2. Thus, (47) holds for some cF < 0 and all x ∈
(0, 1− δ1) and w ∈ (w1, w2) such that Φ−1(x) ≥ ρΦ−1(w) since 1− δ1 < 1 and 0 < w1 < w2 < 1.

On the other hand, when Φ−1(x) < ρΦ−1(w), so that y < 0, it follows from Proposition 2.5 in

Dudley (2014) that φ(y)/Φ(y) ≥ (2/π)1/2, and so (48) implies that

∂ logFX|W (x|w)

∂w
≤ − 2ρ√

1− ρ2

in this case. Hence, condition (8) of Assumption 1 is satisfied. Similar argument also shows that

condition (9) of Assumption 1 is satisfied as well.

We next consider Assumption 2. Since W is distributed uniformly on [0, 1] (remember

that W̃ ∼ N(0, 1) and W = Φ(W̃ )), condition (iii) of Assumption 2 is satisfied. Further,

differentiating x 7→ FX|W (x|w) gives

fX|W (x|w) :=
1√

1− ρ2
φ

(
Φ−1(x)− ρΦ−1(w)√

1− ρ2

)
1

φ(Φ−1(x))
. (49)

Since 0 < δ1 < 1 − δ1 < 1 and 0 < w1 < w2 < 1, condition (ii) of Assumption 2 is satisfied as

well. Finally, to prove condition (i) of Assumption 2, note that since fW (w) = 1 for all w ∈ [0, 1],

(49) combined with the change of variables formula with x = Φ(x̃) and w = Φ(w̃) give

(1− ρ2)

∫ 1

0

∫ 1

0
f2
X,W (x,w)dxdw = (1− ρ2)

∫ 1

0

∫ 1

0
f2
X|W (x|w)dxdw

=

∫ +∞

−∞

∫ +∞

−∞
φ2

(
x̃− ρw̃√

1− ρ2

)
φ(w̃)

φ(x̃)
dx̃dw̃

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
exp

[(
1

2
− 1

1− ρ2

)
x̃2 +

2ρ

1− ρ2
x̃w̃ −

(
ρ2

1− ρ2
+

1

2

)
w̃2

]
dx̃dw̃

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
exp

[
− 1 + ρ2

2(1− ρ2)

(
x̃2 − 4ρ

1 + ρ2
x̃w̃ + w̃2

)]
dx̃dw̃.
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Since 4ρ/(1 + ρ2) < 2, the integral in the last line is finite implying that condition (i) of

Assumption 2 is satisfied. This completes the proof of the lemma. Q.E.D.

Lemma I.4. Let X = U1 +U2W where U1, U2,W are mutually independent, U1, U2 ∼ U [0, 1/2]

and W ∼ U [0, 1]. Then Assumptions 1 and 2 of Section 2 are satisfied if 0 < w1 < w2 < 1,

0 < δ2 ≤ δ1, and (1− w1)/2 < δ1 < 1/2.

Proof. Since X|W = w is a convolution of the random variables U1 and U2w,

fX|W (x|w) =

∫ 1/2

0
fU1(x− u2w)fU2(u2)du2

= 4

∫ 1/2

0
1

{
0 ≤ x− u2w ≤

1

2

}
du2

= 4

∫ 1/2

0
1

{
x

w
− 1

2w
≤ u2 ≤

x

w

}
du2

=


4x
w , 0 ≤ x < w

2

2, w
2 ≤ x <

1
2

2(1+w)
w − 4x

w ,
1
2 ≤ x <

1+w
2

0, 1+w
2 ≤ x ≤ 1

and, thus,

FX|W (x|w) =


2x2

w , 0 ≤ x < w
2

2x− w
2 ,

w
2 ≤ x <

1
2

1− 2
w

(
x− 1+w

2

)2
, 1

2 ≤ x <
1+w

2

1, 1+w
2 ≤ x ≤ 1

.

It is easy to check that ∂FX|W (x|w)/∂w ≤ 0 for all x,w ∈ [0, 1] so that condition (7) of

Assumption 1 is satisfied. We now check condition (8). Consider the case 0 ≤ x < 1/2 and

w ∈ (w1, w2). Then

∂ logFX|W (x|w)

∂w
=

{
− 1
w , 0 ≤ x < w

2
−1/2

2x−w/2 ,
w
2 ≤ x <

1
2

}
< − 1

w1
< 0 (50)

and thus, by the same reasoning as in the proof of Lemma I.3, (8) holds for all 0 ≤ x < 1/2.

Now consider the case x ∈ [1/2, 1 − δ1). On this interval, ∂(FX|W (x|w1)/FX|W (x|w2))/∂x ≤ 0

so that

FX|W (x|w1)

FX|W (x|w2)
=

1− 2
w1

(
x− 1+w1

2

)2
1− 2

w2

(
x− 1+w2

2

)2 ≥ 1

1− 2
w2

(
1+w1

2 − 1+w2
2

)2 =
w2

w2 − (w1 − w2)2/2
> 1,

where the first inequality substitutes in the upper bound (1 + w1)/2 for x, and thus (8) holds

also uniformly over 1/2 ≤ x < 1− δ1.
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We now show that (9) holds. By (50) and the same reasoning as in the proof of Lemma I.3,

(9) holds for all δ1 < x < 1/2. Consider the case 1/2 ≤ x < (1 + w1)/2. Since, in that interval,

∂

∂x

(
1− FX|W (x|w2)

1− FX|W (x|w1)

)
=

4w1(w2 − w1)(1 + w2 − 2x)

w2(1 + w1 − 2x)3
> 0,

we have
1− FX|W (x|w2)

1− FX|W (x|w1)
=

2
w2

(
x− 1+w2

2

)2
2
w1

(
x− 1+w1

2

)2 ≥ 2
w2

(
w2
2

)2
2
w1

(
w1
2

)2 =
w2

w1
> 1,

where the first inequality substitutes in the lower bound 1/2 for x. Therefore, (9) holds for all

1/2 ≤ x < (1 + w1)/2. Checking that (9) holds for all (1 + w1)/2 ≤ x < 1 is trivial.

It is also clear that Assumption 2 holds because δ2 > 0. Q.E.D.

Lemma I.5. For any increasing function h ∈ L2[0, 1], one can find a sequence of increasing

continuously differentiable functions hk ∈ L2[0, 1], k ≥ 1, such that ‖hk − h‖2 → 0 as k →∞.

Proof. Fix some increasing h ∈ L2[0, 1]. For a > 0, consider the truncated function:

h̃a(x) := h(x)1{|h(x)| ≤ a}+ a1{h(x) > a} − a1{h(x) < −a}

for all x ∈ [0, 1]. Then ‖h̃a−h‖2 → 0 as a→∞ by Lebesgue’s dominated convergence theorem.

Hence, by scaling and shifting h if necessary, we can assume without loss of generality that

h(0) = 0 and h(1) = 1.

To approximate h, set h(x) = 0 for all x ∈ R\[0, 1] and for σ > 0, consider the function

hσ(x) :=
1

σ

∫ 1

0
h(y)φ

(
y − x
σ

)
dy =

1

σ

∫ ∞
−∞

h(y)φ

(
y − x
σ

)
dy

for y ∈ R where φ is the density function of a N(0, 1) random variable. Theorem 6.3.14 in

Stroock (1999) shows that

‖hσ − h‖2 =

(∫ 1

0
(hσ(x)− h(x))2dx

)1/2

≤
(∫ ∞
−∞

(hσ(x)− h(x))2dx

)1/2

→ 0

as σ → 0. The function hσ is continuously differentiable but it is not necessarily increasing,

and so we need to further approximate it by an increasing continuously differentiable function.

However, integration by parts yields for all x ∈ [0, 1],

Dhσ(x) = − 1

σ2

∫ 1

0
h(y)Dφ

(
y − x
σ

)
dy

= − 1

σ

(
h(1)φ

(
1− x
σ

)
− h(0)φ

(
−x
σ

)
−
∫ 1

0
φ

(
y − x
σ

)
dh(y)

)
≥ − 1

σ
φ

(
1− x
σ

)
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since h(0) = 0, h(1) = 1, and
∫ 1

0 φ((y − x)σ)dh(y) ≥ 0 by h being increasing. Therefore, the

function

hσ,x̄(x) =

hσ(x) + (x/σ)φ((1− x̄)/σ), for x ∈ [0, x]

hσ(x̄) + (x̄/σ)φ((1− x̄)/σ), for x ∈ (x, 1]

defined for all x ∈ [0, 1] and some x̄ ∈ (0, 1) is increasing and continuously differentiable for

all x ∈ (0, 1)\x̄, where it has a kink. Also, setting x̄ = x̄σ = 1 −
√
σ and observing that

0 ≤ hσ(x) ≤ 1 for all x ∈ [0, 1], we obtain

‖hσ,xσ − hσ‖2 ≤
1

σ
φ

(
1√
σ

)(∫ 1−
√
σ

0
dx

)1/2

+

(
1 +

1

σ
φ

(
1√
σ

))(∫ 1

1−
√
σ
dx

)1/2

→ 0

as σ → 0 because σ−1φ(σ−1/2) → 0. Smoothing the kink of hσ,x̄σ and using the triangle

inequality, we obtain the asserted claim. This completes the proof of the lemma. Q.E.D.

Lemma I.6. Let (p′1, q
′
1)′, . . . , (p′n, q

′
n)′ be a sequence of i.i.d. random vectors where pi’s are

vectors in RK and qi’s are vectors in RJ . Assume that ‖p1‖ ≤ ξn, ‖q1‖ ≤ ξn, ‖E[p1p
′
1]‖ ≤ Cp,

and ‖E[q1q
′
1]‖ ≤ Cq where ξn ≥ 1. Then for all t ≥ 0,

P
(
‖En[piq

′
i]− E[p1q

′
1]‖ ≥ t

)
≤ exp

(
log(K + J)− Ant2

ξ2
n(1 + t)

)
where A > 0 is a constant depending only on Cp and Cq.

Remark I.1. Closely related results have been used previously by Belloni, Chernozhukov,

Chetverikov, and Kato (2015) and Chen and Christensen (2013).

Proof. The proof follows from Corollary 6.2.1 in Tropp (2012). Below we perform some auxiliary

calculations. For any a ∈ RK and b ∈ RJ ,

a′E[p1q
′
1]b = E[(a′p1)(b′q1)]

≤
(
E[(a′p1)2]E[(b′q1)2]

)1/2 ≤ ‖a‖‖b‖(CpCq)1/2

by Hölder’s inequality. Therefore, ‖E[p1q
′
1]‖ ≤ (CpCq)

1/2. Further, denote Si := piq
′
i − E[piq

′
i]

for i = 1, . . . , n. By the triangle inequality and calculations above,

‖S1‖ ≤ ‖p1q
′
1‖+ ‖E[p1q

′
1]‖

≤ ξ2
n + (CpCq)

1/2 ≤ ξ2
n(1 + (CpCq)

1/2) =: R.

Now, denote Zn :=
∑n

i=1 Si. Then

‖E[ZnZ
′
n]‖ ≤ n‖E[S1S

′
1]‖

≤ n‖E[p1q
′
1q1p

′
1]‖+ n‖E[p1q

′
1]E[q1p

′
1]‖ ≤ n‖E[p1q

′
1q1p

′
1]‖+ nCpCq.

For any a ∈ RK ,

a′E[p1q
′
1q1p

′
1]a ≤ ξ2

nE[(a′p1)2] ≤ ξ2
n‖a‖2Cp.
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Therefore, ‖E[p1q
′
1q1p

′
1]‖ ≤ ξ2

nCp, and so

‖E[ZnZ
′
n]‖ ≤ nCp(ξ2

n + Cq) ≤ nξ2
n(1 + Cp)(1 + Cq).

Similarly, ‖E[Z ′nZn]‖ ≤ nξ2
n(1 + Cp)(1 + Cq), and so

σ2 := max(‖E[ZnZ
′
n]‖, ‖E[Z ′nZn]‖) ≤ nξ2

n(1 + Cp)(1 + Cq).

Hence, by Corollary 6.2.1 in Tropp (2012),

P
(
‖n−1Zn‖ ≥ t

)
≤ (K + J) exp

(
− n2t2/2

σ2 + 2nRt/3

)
≤ exp

(
log(K + J)− Ant2

ξ2
n(1 + t)

)
.

This completes the proof of the lemma. Q.E.D.
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