
Testing for the presence of 
measurement error

Daniel Wilhelm

The Institute for Fiscal Studies 

Department of Economics, 

UCL 

cemmap working paper CWP48/19



Testing for the Presence of Measurement Error

Daniel Wilhelm∗

September 13, 2019

Abstract

This paper proposes a simple nonparametric test of the hypothesis of no measurement

error in explanatory variables and of the hypothesis that measurement error, if there is

any, does not distort a given object of interest. We show that, under weak assumptions,

both of these hypotheses are equivalent to certain restrictions on the joint distribution of an

observable outcome and two observable variables that are related to the latent explanatory

variable. Existing nonparametric tests for conditional independence can be used to directly

test these restrictions without having to solve for the distribution of unobservables. In

consequence, the test controls size under weak conditions and possesses power against a

large class of nonclassical measurement error models, including many that are not identified.

If the test detects measurement error, a multiple hypothesis testing procedure allows the

researcher to recover subpopulations that are free from measurement error. Finally, we

use the proposed methodology to study the reliability of administrative earnings records

in the U.S., finding evidence for the presence of measurement error originating from young

individuals with high earnings growth (in absolute terms).
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1 Introduction

In empirical research, concerns about measurement error, broadly defined as any difference be-

tween what we observe and what we would like to observe in the data, are widespread and

emerge for a variety of different reasons such as reporting errors on surveys, proxy errors, model

misspecification, or the desire to measure imprecisely defined concepts like ability or skills. Fail-

ing to account for such errors may lead to significantly distorted conclusions or no distortions

at all, depending on the nature of the errors. Perhaps surprisingly, apart from a few prominent

exceptions (e.g. Altonji (1986), Card (1996), Erickson and Whited (2000, 2012), Cunha, Heck-

man, and Schennach (2010), Feng and Hu (2013), Arellano, Blundell, and Bonhomme (2017)),

current empirical practice is dominated by informal arguments for the absence of measurement

error or that it is of second-order importance. A healthy dose of judgment and critical thinking

is, of course, essential for any evaluation of empirical work, but discussions about the importance

of measurement difficulties are typically based on little to no information about the origin of

measurement errors, how they relate to other variables in the model or how large signal-to-noise

ratios might be. Therefore, a formal analysis of the extent of the measurement problem could

significantly strengthen the credibility of subsequent findings. Unfortunately, identification of

measurement error models relies on strong assumptions and leads to estimators that perform

poorly. The credibility of such an analysis that recovers the “true” latent structure is therefore

often limited.

In this paper, we propose a fundamentally different and more pragmatic approach to address-

ing potential measurement problems, which avoids the recovery of the “true” latent structure

and leads to simple nonparametric inference for assessing the importance of measurement error.

Consider a generic production problem in which an outcome Y ∈ R is produced from inputs

X∗ ∈ Rdx . We observe a variable X ∈ Rdx which we suspect may be an error-contaminated

measurement of the inputs X∗ and another variable Z ∈ Rdz that is related to X∗, perhaps an

instrument or a repeated measurement.

We are interested in two types of hypotheses. The first is the hypothesis of no measurement

error in X,

HnoME
0 : P (X = X∗) = 1, (1)

This hypothesis may be of direct economic interest because it can sometimes be interpreted as the

absence of certain frictions such as inattention, price misperceptions, or imperfect competition

(Chetty (2012)). Testing HnoME
0 could also be useful as a model specification test. However, in

this case, the researcher is likely less interested in whether there is measurement error or not,

but rather in whether the measurement error, if there is any, distorts objects of interest such as

the production function. We therefore also study a second type of hypothesis,

Hfunc
0 : P (EP [ΛP (Y,X) | X∗, X] = 0) = 1, (2)

where the function ΛP characterizes the equality of the researcher’s object of interest and an

observable counterpart. For example, Hfunc
0 allows us to test whether the observed and true
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conditional expectations of Y |X and Y |X∗ are the same,

P (EP [Y |X∗] = EP [Y |X]) = 1, (3)

or whether inequality in the distribution of Y among individuals with the same X∗, for example

measured by a conditional entropy EP [Y log(Y )|X∗], is the same as the observed conditional

entropy,

P (EP [Y log(Y )|X∗] = EP [Y log(Y )|X]) = 1. (4)

When a hypothesis such as (3) or (4) holds, it does not necessarily imply that there is no

measurement error in X but only that, if there is any, it does not affect the relevant functional.

In fact, in a finite sample, a test may fail to reject such hypotheses even when measurement error

does affect the functionals, but the distortion is small relative to sampling noise. In this sense,

we can use the test to find out whether measurement error leads to severe enough distortions

such that the data can distinguish functionals based on true and mismeasured explanatory

variables. Testing (2) for various functions ΛP then allows us to explore for which type of

economic questions measurement error matters and for which ones it does not. For example,

measurement error might affect the average level of Y (i.e. (3) does not hold), but not inequality

in Y (i.e. (4) holds). In this case, policy questions depending on how a change in X∗ affects

inequality in the outcome can be answered without accounting for measurement error, but

questions related to the effect on average outcomes cannot.

The two null hypotheses HnoME
0 and Hfunc

0 depend on the latent variable X∗ and thus

cannot directly be tested. Instead of attempting to recover the “true” latent structure and then

perform tests based on that, we start by imposing a weak restriction that does not pin down

the latent structure but nevertheless can be exploited to test HnoME
0 and Hfunc

0 :

Y ⊥ Z | X∗. (5)

This assumption postulates that outcomes and the measurement Z are independent conditional

on the actual inputs of production, X∗, and is thus a type of exclusion restriction. It implies

that Y is produced by X∗, not by the measurement Z. This exclusion restriction is standard in

the literature on identification and estimation of measurement error models (Chen, Hong, and

Nekipelov (2011), Schennach (2013, 2016), Hu (2017)) and has already been justified in a wide

range of empirical applications (see Section 2 for examples).

If the restriction (5) holds, then HnoME
0 implies that Z must also be independent of the

outcome conditional on the observed X,

Y ⊥ Z | X. (6)

Unlike HnoME
0 , this is a restriction that depends only on observables and can directly be tested

using existing tests for conditional independence. HnoME
0 implies (6) without any other as-

sumptions besides the exclusion restriction (5), so that a valid test of (6) is also a valid test

of the null of no measurement error under very general conditions. In particular, all variables

3



may be either continuous or discrete, and the variable Z may be binary even when X,X∗ are

continuous. The outcome equation and the equations determining X and Z (the “measurement

system”) may be fully nonseparable with unobserved heterogeneity of any dimension.

While the observable implication (6) is a fairly immediate consequence of HnoME
0 and the

exclusion restriction, significantly more effort is required to derive conditions under which the

two are in fact equivalent. This result requires a monotonicity condition in the outcome model

such that some moment of Y monotonically varies with X∗ and a relevance condition that

ensures Z is sufficiently related to X∗. Again, the outcome equation and the measurement

system may be fully nonseparable with unobserved heterogeneity of any dimension. In the case

of continuous X,X∗, no completeness assumptions are required. The measurement errors are

allowed to depend on each other and on the true variable. As a result the test has power

against, and thus is able to detect, a wide range of realistic nonclassical measurement error

models without requiring that they are identified.

Having established the equivalence result for HnoME
0 , we extend it to the hypothesis Hfunc

0

with functions ΛP that satisfy a certain monotonicity condition.

For the case in which a test of HnoME
0 or Hfunc

0 rejects, we propose a multiple testing pro-

cedure that performs the same test on a number of prespecified subpopulations so as to account

for multiplicity by controlling the family-wise error. By collecting those null hypotheses that

are not rejected the researcher then recovers subpopulations in which there is no measurement

error or no distortion of the object of interest, respectively.

Finally, we study the reliability of administrative earnings records in the United States. The

proposed test rejects the null of no measurement error on the full dataset as well as on most

subsamples we consider, with p-values that are numerically zero or very close to zero. We present

some evidence that is consistent with young individuals who experience high earnings growth

(in absolute terms) being responsible for the measurement error.

Related Literature In the special case of a binary explanatory variable, Mahajan (2006)

provides conditions under which the null of no measurement error is equivalent to the same

conditional independence condition that we derive in this paper. His assumptions imply identi-

fication of the whole model, which is not necessary for the purpose of testing for the presence

of measurement error. We show that the conditions in this paper are implied by Mahajan’s.

More importantly, our result applies to arbitrary discrete and continuous distributions for the ex-

planatory variable. Especially the latter case requires more general arguments to avoid claims of

identification based on strong completeness and independence conditions. In addition, we show

how to test whether measurement error affects objects of interest, provide low-level conditions

in various measurement error models and a procedure for recovering measurement error-free

subpopulations.

In principle, one could construct a test for the presence of measurement error by comparing

an estimator of the model that accounts for the possibility of measurement error with one that

ignores it, similar in spirit to the work by Durbin (1954), Wu (1973), and Hausman (1978). If the
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difference between the two is statistically significant, then one could conclude that this is evidence

for the presence of measurement error. However, this strategy would require identification and

consistent estimation of the measurement error model, which leads to overly strong assumptions,

the necessity of solving ill-posed inverse problems in the continuous variable case, and potentially

highly variable estimators. These difficulties can all be avoided by the approach presented in

this paper.

There are some existing tests for the presence of measurement error in parametric models

that require identification and consistent estimators of the model: Hausman (1978), Chesher

(1990), Chesher, Dumangane, and Smith (2002), Hahn and Hausman (2002), and Hu (2008).

Related to Hausman (1978), in empirical work it is common to estimate linear regressions by

OLS and IV, and then attribute a difference in the two estimates to the presence of measurement

error, treating the IV estimate as the consistent and unbiased estimator. Of course, this strategy

is valid only if the true relationship of interest is in fact linear, the measurement error is classical,

and the model is identified. None of these assumptions are required in the approach proposed

in the present paper.

Our proposed testing approach is related to, but different from, some other testing problems

such as testing for exogeneity or significance of regressors. In linear models, measurement error

and any other unobservable causing endogeneity are absorbed by the error in the outcome equa-

tion. This is not the case in nonlinear models, so that testing for the presence of measurement

error and testing for other forms of endogeneity are distinct problems. In Section 2.3, we discuss

in more detail the differences between the hypotheses considered in this paper and the hypothesis

of exogeneity. The connection to testing for significance of regressors is closer because we show

that the null of no measurement error is equivalent to a conditional independence condition,

which can be tested with existing significance tests such as Gozalo (1993), Fan and Li (1996),

Delgado and Gonzalez Manteiga (2001), Mahajan (2006), and Huang, Sun, and White (2016).

Software Implementations We provide R and STATA code implementing the proposed test-

ing procedure at http://github.com/danielwilhelm/R-ME-test and http://github.com/

danielwilhelm/STATA-ME-test.

2 The Null Hypothesis of No Measurement Error

In this section, we focus on testing the null of no measurement error1 in the explanatory variable:

HnoME
0 : P ∈ P0 (7)

versus HnoME
1 : P ∈ P \P0, where P is a “large” set of distributions and

P0 := {P ∈ P : P (X∗ = X) = 1}.
1Appendix A.1 provides reasons for why we do not consider flipping the null and alternative hypotheses.
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The null hypothesis HnoME
0 cannot be tested directly in the sense that it involves the joint

distribution of the unobservable X∗ and the observable X. In Sections 2.1 and 2.2, we therefore

first provide general conditions on P under which (7) is equivalent to a hypothesis about the

joint distribution of the observables (Y,X,Z). Appendix B discusses the assumptions in the

context of specific measurement error models and economic applications. Section 2.3 explains

the difference between testing HnoME
0 and testing the null of exogeneity.

2.1 Observable Implication

Probability measures and random vectors in this paper are all defined on the same Borel space

(Ω,B(Ω)).2 Let Y ∈ R be an outcome variable, and X∗ ∈ Rdx , X ∈ Rdx , Z ∈ Rdz some random

vectors.

Assumption 1 (exclusion). Y ⊥ Z | X∗ under P .

This assumption requires Z to be excluded from the outcome model conditional on X∗. Z

may be some general indicator of X∗, i.e. a variable that depends on X∗ in some way, but

does not need to measure the same concept as X∗. The exclusion restriction requires that it

affects the outcome Y only through the explanatory variable X∗. In Section B, we show that

this assumption can accommodate interpretations of Z as a second measurement of X∗ and as

an instrument for X∗ as special cases.

Assumption 1 is standard in the literature on identification and estimation of measurement

error models (Chen, Hong, and Nekipelov (2011), Schennach (2013, 2016), Hu (2017)) and has

already been justified in a wide range of empirical applications. Since the assumption is central to

all arguments of this paper, we provide a few examples. For the simplicity of discussion, however,

we ignore the fact that, in some applications, the exclusion restriction should be modified to

conditional mean independence or to the presence of additional conditioning variables as these

are straightforward extensions as elaborated on below.

There is a recent and rapidly growing field that studies early childhood interventions by

identifying and estimating the production function of skills (e.g. Cunha, Heckman, and Schen-

nach (2010), Heckman, Pinto, and Savelyev (2013), Attanasio, Cattan, Fitzsimons, Meghir, and

Rubio-Codina (2015), Attanasio, Meghir, and Nix (2017)). Depending on the objective of the

analysis, Y represents an outcome in adulthood (e.g. income or and indicator for college atten-

dance) or simply a future skill measurement (e.g. a test score). The outcome is produced from

a vector of inputs (X∗) such as (non-)cognitive skills, health, and parental investment. These

inputs are measured by a vector X, typically a battery of test scores and observable aspects

of parental investment, among others. In this context, Z is a set of measurements different

from those in X. The authors above justify the exclusion restriction by arguing that the inputs

to production are the true inputs X∗ rather than the measurements (X,Z). This means that

conditional on knowing the true inputs X∗, the measurements should not provide any additional

2Appendix E defines this probability space slightly more carefully.
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information about outcomes. This argument also applies to other production problems in which

inputs are difficult to measure (e.g. Olley and Pakes (1996)).

In the firm-level investment literature (Bond and Van Reenen (2007)), Y represents a firm’s

investment, X∗ the discounted sum of expected future marginal benefits as perceived by the

firm’s manager (“marginal q”), X the firm’s book-to-market ratio (“average q”), and Z could

either be average q from a different time period or a variable that does not enter the manager’s

information set. According to the q-theory of investment (Lucas and Prescott (1971), Mussa

(1977)) X∗ is the only determinant of investment, so that conditional on X∗ the measurements

(X,Z) should not provide any additional information about investment. This justifies the ex-

clusion restriction.

In the empirical part (Section 5), Y,X,Z are three measurements of earnings, but Y and

(X,Z) come from two different data sources, one from a survey and the other from an adminis-

trative dataset. We then argue Assumption 1 holds because (i) the error in Z has a very different

origin from the error in Y , at least conditional on X∗, and (ii) the two errors are unlikely to

share common components because of the way the sample is selected.

There are many other empirical applications that also impose Assumption 1: for instance,

Altonji (1986) studies labor supply, Kane and Rouse (1995) and Kane, Rouse, and Staiger (1999)

the returns to education, Card (1996) the effect of unions on the wage structure, Hu, McAdams,

and Shum (2013) auctions with unobserved heterogeneity, Feng and Hu (2013) unemployment

dynamics, and Arellano, Blundell, and Bonhomme (2017) earnings dynamics.

The following definition introduces the set of distributions M that satisfy the maintained

exclusion restriction.

Definition 1. Let M be the set of distributions P that satisfy Assumption 1.

For distributions in M we can state an intuitive observable implication of the null of no

measurement error.

Theorem 1. If P = M, then (7) implies

Y ⊥ Z | X under P. (8)

If condition (8) holds, then the conditional distribution of Y given X and Z does not vary

with Z. The result implies that, under the exclusion restriction, a rejection of the hypothesis

(8) implies a rejection of the null of no measurement error, HnoME
0 . Therefore, a level-α test of

(8) is also a level-α test of HnoME
0 . In fact, (8) is a hypothesis of conditional independence, for

which many tests have already been proposed (e.g. Gozalo (1993), Fan and Li (1996), Delgado

and Gonzalez Manteiga (2001), Mahajan (2006), Huang, Sun, and White (2016), among many

others). Appendix C reports simulation results for the test by Delgado and Gonzalez Manteiga

(2001), which we use in the empirical part (Section 5), and confirms that it controls size under

the null of no measurement error.3

3R and STATA implementations are available at http://github.com/danielwilhelm/R-ME-test and http:

//github.com/danielwilhelm/STATA-ME-test.
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Unlike (8) the null of no measurement error, HnoME
0 , depends on the distribution of un-

observable variables. A direct test of HnoME
0 would therefore require solving for the joint

distribution of (X,X∗) from the distribution of observables (Y,X,Z). This is a hard statistical

problem, especially in the case of continuous explanatory variables, in the sense that estimators

tend to be highly variable and may possess slow, possibly logarithmic, convergence rates (Fan

(1991)). Furthermore, the implementation of such a test in the continuous case would involve

relatively complicated estimators based on operator inversions. Tests based on (8) avoid all of

these complications.

For Theorem 1 to hold, we only need to impose the exclusion restriction and, perhaps

surprisingly, no other conditions. Therefore, it is important to emphasize what is not assumed.

First of all, distributions in M allow Y,X∗, X, Z each to be discrete, continuous or mixed, and

the supports may be bounded or unbounded. The randomness in the conditional distributions

of Y |X∗ and Z|X∗ may originate from unobserved heterogeneity of unrestricted dimensions

and those sources of heterogeneity may interact with X∗ in nonlinear, nonseparable ways. In

addition, they are allowed to depend on X∗ which means we can allow for endogeneity of X∗

(see Appendix A.4 for more details). Finally, notice that the observable restriction (8) is testable

even though, under the null, the structural relationship between Y and X∗ and that between

X∗ and Z are not identified without further assumptions and normalizations.

Theorem 1 is an intuitive consequence of the exclusion restriction because, under the null, the

conditioning variable X∗ is equal to X with probability one, so we expect Y to be independent

of Z not only conditional on X∗ but also conditional on X. Consider the following, slightly more

formal, derivation of the observable implication. Under the null, for any two bounded functions

a and b,

EP [a(Y )b(Z)|X]
(?)
= EP [a(Y )b(Z)|X∗]

= EP [a(Y )|X∗]EP [b(Z)|X∗]
(?)
= EP [a(Y )|X]EP [b(Z)|X]

where all equalities hold a.s. and the second equality follows from the exclusion restriction.

Since the equality holds for all bounded functions a and b for which the expectations exist, the

desired conditional independence then follows. To formalize this argument one needs to establish

equality of the sigma algebras on both sides of the equalities marked by (?). Appendix E contains

the details.

Remark 1 (non-directional test). As is common with many other hypothesis tests, a test of

HnoME
0 versus HnoME

1 is non-directional in the sense that rejecting the null does not lead to

a recommendation as to which measurement error model is appropriate for a given sample.

This paper provides two possible routes towards a more constructive conclusion in that case.

First, Section 3 extends the results of this section to the hypothesis Hfunc
0 mentioned in the

introduction. In case of a rejection of HnoME
0 , we can therefore further explore whether the

measurement error distorts a given object of interest or which type of objects it does and does
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not affect. Second, Section 4 proposes a sequential testing procedure that allows us to recover

subpopulations that are free from measurement error. �

Remark 2 (additional controls). Theorem 1 readily extends to the presence of additional,

correctly measured covariates W that affect the outcome Y . In this case, the exclusion restriction

in Assumption 1 is replaced by Y ⊥ Z | (X∗,W ) which means that the exclusion holds only after

additional conditioning on W . This assumption may be more plausible in economic applications,

in which there are variables W that jointly determine Y and Z. In addition, this exclusion

restriction allows the distributions of unobservable errors in Y and Z conditional on X∗ and W

to vary with X∗ and W , i.e. individuals with different characteristics W are allowed to draw

errors from different distributions. Under the exclusion restriction with additional controls, the

null hypothesis (7) then has the observable implication Y ⊥ Z | (X,W ). �

Remark 3 (mean independence). One could relax the exclusion restriction to conditional mean

independence. Let M′ be the set of distributions P such that there exists a function µ with

EP [µ(Y )|X∗, Z] = EP [µ(Y )|X∗] a.s.. If P = M′, then the null of no measurement error, (7),

implies

EP [µ(Y )|X,Z] = EP [µ(Y )|X] a.s. (9)

which is an observable restriction that can be tested just like (8). At this point, conditional

mean independence appears strictly more desirable than the conditional independence condition

in Assumption 1, but in the next subsection we see that there is a cost to this generalization

when showing equivalence of (7) and (9). See Remark 6. �

Remark 4 (invariance of the null). Let τ : Rdx → Rdx be an invertible mapping. Of course, the

null hypothesis HnoME
0 is invariant under invertible transformations, i.e. P0 is equal to the set

{P ∈ P : P (τ(X∗) = τ(X)) = 1}. Similarly, we can also allow the transformation τ to depend

on P , assuming that τ(·, P ) is invertible for every P , and apply it only to X∗, not to X, i.e.

P (τ(X∗, P ) = X) = 1,

which implies (8) if P = M.4 Let FX∗(·, P ) and FX(·, P ) be the cumulative distribution functions

of X∗ and X under P and consider, for example, the case in which τ(·, P ) = F−1
X (FX∗(·, P ), P ),

assuming that the two distribution functions are invertible over their respective supports. Then

testing (8) can be interpreted as testing

P (FX∗(X
∗, P ) = FX(X,P )) = 1,

i.e. whether the true rank of X∗ is equal to the observed rank of X. �
4This can be seen as follows. Let X̃∗ := τ(X∗, P ). Then there is P̃ ∈ M such that (Y, X̃∗, X, Z) ∼ P̃ with

P̃ (X̃∗ = X) = 1 so that (8) holds under P̃ and thus also under P .
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2.2 Equivalence

This subsection provides conditions under which the restriction (8) on observables is not only

implied by but also implies the null hypothesis HnoME
0 , a result that is important for establishing

power of a test against alternatives violating HnoME
0 . If Z was independent of all other variables,

then the observable implication (8) holds even when the null hypothesis HnoME
0 is violated.

Therefore, it is clear that showing the desired equivalence result requires further restrictions on

the set M, denoted by MR ⊂ M. The key challenge lies in restricting MR enough such that

(8) holds only for those P ∈ MR that also satisfy the null, while at the same time restricting

MR not too much so the class of distributions remains “large” and, thus, contains measurement

error models as general as possible.5

Throughout this subsection, we assume X∗, X, Z are scalar (dx = dz = 1).6 We first explain

the approach of this section in a heuristic fashion. Consider the special case when X∗, X are

continuously distributed. Suppose the observable implication (8) holds. Then, for any two

values z1, z2, we have PY |X,Z=z1 = PY |X,Z=z2 which means expectations of Y with respect to

these two distributions must also be equal. Let us also strengthen the exclusion restriction to

Y ⊥ (X,Z) | X∗. Then∫
EP [µ(Y )|X∗] d(PX∗|X,Z=z1 − PX∗|X,Z=z2) = 0,

for any function µ. If EP [µ(Y )|X∗ = ·] is differentiable, then integration by parts yields∫ (
PX∗|X=x,Z=z1(x∗)− PX∗|X=x,Z=z2(x∗)

) ∂EP [µ(Y )|X∗ = x∗]

∂x∗
dx∗ = 0. (10)

We want to show that this equation implies the null hypothesis HnoME
0 . On the contrary,

assume that this is not the case. To generate a contradiction, we want to ensure that (10)

does not hold under the alternative H1. This is the case, for example, when EP [µ(Y )|X∗ = ·]
is monotone (and not constant) and PX∗|X=x,Z=z2 first-order stochastically dominates (FOSD)

PX∗|X=x,Z=z1 (and they are not equal) under H1. The monotonicity assumption makes sure the

derivative of the conditional expectation does not change sign (and is nonzero somewhere) and

the dominance condition implies that the difference of the conditional distributions is nonnega-

tive (and positive somewhere). In conclusion, the integral in (10) is nonzero under H1, yielding

the desired contradiction, so the null of no measurement error must hold.

While the monotonicity condition is often directly implied by economic theory (see the

discussion below), the FOSD condition is an opaque high-level assumption in that it is difficult

to see what restrictions it places on any given measurement error model. We therefore first

5We do not claim that these maintained assumptions are minimal in any sense, but we argue that they allow for

a diverse range of realistic nonclassical measurement error models. In addition, we show that these assumptions

are easy to interpret in concrete models. It is therefore our view that generalizing them further (or perhaps even

finding a minimal set of such assumptions), though a worthwhile theoretical exercise for future work, is not of

first-order importance at this stage.
6Appendix A.2 discusses the multivariate extension.
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formally state the above result for the general case when X∗ is scalar, but not restricted to be

continuous, and without assuming differentiability of the conditional expectation, and then turn

to the main task of this section, deriving sufficient conditions for the FOSD requirement that

can be interpreted in concrete measurement error models.

Assumption 2 (stronger exclusion). Y ⊥ (X,Z) | X∗ under P

This assumption strengthens the exclusion restriction so that not only Z but also the ob-

served explanatory variable, X, is excluded from the outcome model conditional on X∗. This

means that X cannot provide any more information about Y than the true explanatory variable

X∗ already does (“non-differential measurement error”). The empirical examples discussed in

Section 2.1 do in fact impose this stronger assumption rather than the weaker version from that

section.

Denote by SA the support of a random variable or random vector A under P . To simplify

the exposition we omit the dependence of SA on P .

Assumption 3 (monotonicity). There is a measurable function µ : SY → R and a set X ∗ ⊆ SX∗
so that x∗ 7→ EP [µ(Y )|X∗ = x∗] exists, is monotone over SX∗ and strictly monotone over X ∗.

This assumption requires monotonicity of some conditional moment of Y |X∗. It holds for

example if, for some y, P (Y ≤ y|X∗ = ·) or EP [Y |X∗ = ·] is monotone. Such monotonicity

assumptions are often directly implied by economic theory, e.g. when EP [µ(Y )|X∗ = x∗] is a

production, cost, or utility function. Examples can be found in Matzkin (1994), Olley and Pakes

(1996), Cunha, Heckman, and Schennach (2010), Blundell, Horowitz, and Parey (2012, 2016),

Kasy (2014), Wilhelm (2015), Hoderlein, Holzmann, Kasy, and Meister (2016), Chetverikov and

Wilhelm (2017), among many others.

Assumption 4 (FOSD). There exist a constant C > 0 and sets X ⊆ SX , Z1,Z2 ⊆ SZ ,

Z1 ∩ Z2 = ∅, such that PX,Z(X × Zk) > 0, k = 1, 2, and the following two conditions hold: for

any (x, z1, z2) ∈ X × Z1 ×Z2,

P (X∗ ≥ x∗|X = x, Z = z1) ≤ P (X∗ ≥ x∗|X = x, Z = z2) ∀x∗ ∈ R (11)

and, for X ∗ the same set as in Assumption 3,

P (X∗ ≥ x∗|X = x, Z = z1) ≤ P (X∗ ≥ x∗|X = x, Z = z2)− C ∀x∗ ∈ X ∗. (12)

Condition (11) is the FOSD requirement introduced in the heuristic explanation above. (12)

ensures that the dominance is strict at least for some values of x∗ for which EP [µ(Y )|X∗ = x∗]

is strictly monotone. The assumption rules out the case in which Z is independent of X∗ and

can thus be viewed as a relevance condition.

We now define the set MR of distributions that satisfy the maintained Assumptions 2–4

under the alternative and then state the desired equivalence result.
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Definition 2. Let MR be the set of distributions P ∈ M that satisfy Assumptions 2–4 when

P (X = X∗) < 1.

Theorem 2. Suppose P = MR. Then P ∈ P satisfies (7) if, and only if, it satisfies (8).

Theorem 1 already establishes that a level-α test of (8) is also a level-α test of HnoME
0 .

However, it is easy to construct examples of distributions in M for which HnoME
0 is violated,

but (8) holds. A test of (8) has no power against such violations of HnoME
0 . Theorem 2 shows

that, for all distributions in the restricted set MR, (8) implies HnoME
0 . Therefore, a test that has

power against all violations of (8) within MR must then also have power against all violations of

HnoME
0 within MR. In this sense, a consistent test of the observable restriction (8) can recover

any measurement error model that is compatible with the restrictions defining MR.

Except in some models such as binary misclassification (see Appendix B.1), it is not easy

to see how the FOSD assumption restricts measurement error processes under the alternative.

In the remainder of this section, we therefore discuss sufficient conditions that can fairly easily

be interpreted in concrete measurement error models and at the same time are general enough

to allow for realistic forms of nonclassical measurement error. Appendix B presents several

measurement error models that have been considered in the literature and shows how the as-

sumptions of this section can be verified.

Let ρx and ρz each denote either Lebesgue on R or counting measure on a discrete subset of R,

but they do not need to be the same. For two elements (or vectors) A and B, we denote by PA|B

the regular conditional distribution7 of A given the sigma algebra generated by B. We use the

notation EP (A|B) for conditional expectations under P of A given the sigma algebra generated

by B. The event of no measurement error, D := {ω ∈ Ω: X(ω) = X∗(ω)}, subsequently plays a

prominent role. Let Dc denote the complement of D. For two sets G,H ∈ B(Ω), we sometimes

use the notation

PH(G) :=
P (G ∩H)

P (H)

if P (H) > 0. Since this defines just another distribution, conditional distributions of A|B under

PH , denoted by PHA|B, are well-defined.

Any distribution P can be decomposed as a mixture of two distributions, one on the event

D of no measurement error and one on the event Dc of some measurement error. These two

mixture components are the distributions PD and Q := PD
c
, respectively, i.e.

P = λPD + (1− λ)Q (13)

with λ := P (D) the probability of no measurement error.8 We can therefore think of the data-

generating process in two steps. First, draw a Bernoulli random variable with probability λ for

whether there is measurement error or not. If there is, then the data (Y,X∗, X, Z) are drawn

from Q, otherwise from PD.

7See chapter 10.2 of Dudley (2002) for a definition. Regular conditional distributions exist because all random

vectors are defined on the same Borel space from Appendix E (Theorem 10.2.2 in Dudley (2002)).
8When λ = 0 (or 1), we let PD (or Q) be an arbitrary distribution.
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Sufficient conditions for the FOSD requirement in Assumption 4 need to restrict the set

of possible measurement error models that are entertained. In particular, this means placing

restrictions on the distribution Q.

Assumption 5 (existence of a density). (i) The distributions QZ , PDX∗|Z=z, and QX,X∗|Z=z

have densities, bounded by Cq <∞, with respect to ρz, ρx, and ρx × ρx for all z ∈ Z1 ∪Z2 with

Z1,Z2 ⊆ SZ , Z1 ∩ Z2 = ∅. (ii) QZ = PDZ .

The existence of a density is a weak assumption, allowing for discrete and continuous distri-

butions for (X,X∗) and Z. One could also allow for mixed continuous-discrete distributions at

the expense of more complicated notation and proofs. Notice that the dominating measures ρx

and ρz might be different, thus allowing for (X,X∗) to be continuous and Z to be discrete (or

vice versa). We denote densities by lower letters of the corresponding distributions.

Part (ii) is imposed only to simplify the notation in this section and the proofs, but is not

necessary for the subsequent results. It requires the marginal distribution of Z to be the same

regardless of whether there is measurement error in X.

Assumption 6 (restriction on ME dependence). X ⊥ Z | X∗ under Q

For the general result in this section, we impose the assumption that the sources of ran-

domness in X|X∗ and Z|X∗ are independent of each other. If Z is a repeated measurement

of X∗, for example, the assumption means that the measurement error in X is independent of

that in Z conditional on X∗. Therefore, both measurement errors can be nonclassical and thus

depend on each other through X∗, but there cannot be any direct dependence between them.

However, with more structure on the measurement system, it is actually possible to allow for

direct dependence between the measurement errors (see Appendix B.2).9

Assumption 7 (probability of ME). P (D|X∗ = x∗, Z = z) = P (D|X∗ = x∗) for all x∗ ∈ SX∗
and z ∈ Z1 ∪ Z2.

This assumption allows for the conditional probability of no measurement error to vary with

X∗, but not with Z. This is a common assumption in the literature on identification of models

with misclassification in discrete explanatory variables (e.g. Lewbel (2000) and Mahajan (2006)).

In the case of continuous explanatory variables, the existing literature typically assumes the

probability is equal to 1 for all conditioning values x∗ and z (e.g. Chen, Hong, and Nekipelov

(2011) and Schennach (2013)), so that the measurement error distribution X − X∗ does not

have a pointmass at zero.10 Assumption 7, on the other hand, allows for the probability of no

measurement error to freely vary in the interval [0, 1] as a function of x∗. This is important,

for example, when X∗ is discrete or when X is the response of an individual on a survey. For

9In addition, an inspection of the proof of Theorem 3 reveals that we do not actually need conditional inde-

pendence, but rather only that qX|X∗,Z(x|x∗, z1) = qX|X∗,Z(x|x∗, z2) for zk ∈ Zk. If the support of Z has more

than two elements, then the two densities can differ for values (z1, z2) 6∈ Z1 ×Z2.
10An and Hu (2012) is a noticeable exception.
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example, if X∗ is true income and X is reported income, we can allow high- and low-income

individuals to have different propensities to misreport.

To be able to state the final assumption, which ensures relevance of Z, we introduce the

following concept of a single-crossing function.

Definition 3. A function f : A → R, where A ⊆ R, is called single-crossing (from below) if,

for any x′, x′′ ∈ A with x′ < x′′, f(x′) > 0 implies f(x′′) ≥ 0.

This definition allows a single-crossing function to be equal to zero in multiple places, but it

can change sign only once and only from negative to positive as the argument of the function

increases.

For c ∈ R and z = (z1, z2) ∈ Z1 ×Z2, define the function ∆pc,z : SX∗ → R as

∆pc,z(x
∗) := pX∗|Z(x∗|z2)− c pX∗|Z(x∗|z1).

Also, let C be the range of pX|Z(x|z2)/pX|Z(x|z1) as (x, z1, z2) varies over X × Z1 ×Z2.

Assumption 8 (single-crossing). There are a constant cq > 0, an interval I ⊂ R, and a set

X ⊆ SX such that qX|X∗(x|x∗) ≥ cq and P (Dc|X∗ = x∗) ≥ cq for all x ∈ X , x∗ ∈ X ∗ := I∩SX∗,
zk ∈ Zk, k = 1, 2, and, for all c ∈ C and z ∈ Z1 ×Z2:

(i) ∆pc,z is single-crossing,

(ii) ∆pc,z(x
∗) ≥ cq for all x∗ ∈ X ∗.

This assumption is the main restriction that ensures Z is sufficiently related to X∗. Part (i)

requires that there exist two sets Z1,Z2 so that, for z ∈ Z1 × Z2, the function ∆p1,z is single-

crossing. This means the two conditional densities pX∗|Z(·|z2) and pX∗|Z(·|z1) cross at most

once (they may be equal over an interval intersected with their supports). Part (ii) then simply

strengthens the single-crossing requirement to be strict in the sense that the two densities differ

over X ∗.
First, notice that this assumption is a restriction on the distribution of X∗ given Z whereas

the FOSD condition in Assumption 4 is a restriction on the distribution of X∗ given X and Z.

Restrictions on the former can easily be interpreted in concrete measurement error models but

restrictions on the latter cannot. For example, if Z is an instrument for X∗, Assumption 8 is a

requirement on how changing the value of the instrument from z1 to z2 shifts the distribution of

X∗. To see this consider the examples in Figure 1. Each panel plots the densities pX∗|Z(·|z2) and

pX∗|Z(·|z1). In panel (a), both densities are normally distributed in which case an arbitrarily

small shift in Z from z1 to z2 ensures that the two densities cross only once. This is because the

normal density is very smooth. Panel (b) shows a case in which the two densities are mixtures

of normals and Z has to shift the conditional distribution further to avoid them crossing at

several separated points. Panel (c) is an example of two compactly supported densities whose

supports overlap. Even though the two densities do not equal each other over the intersection

of their supports, the upper bound of the support of X∗|Z = z1 is the point to the left of which

14



(a)

x*

Z = z2

Z = z1

Z = z1 scaled

(b)

x*

Z = z2

Z = z1

Z = z1 scaled

(c)

x*

Z = z2

Z = z1

Z = z1 scaled

(d)

x*

Z = z2

Z = z1

Z = z1 scaled

Figure 1: Examples of continuous densities pX∗|Z that satisfy the single-crossing condition. Panel (a) shows the

normal case, panel (b) a mixture of normals, panel (c) two compactly supported distributions whose densities do

not equal each other on the intersection of their supports, and panel (d) a case with infinitely many intersection

points that are not separated.

pX∗|Z(·|z1) is above pX∗|Z(·|z2) and vice versa to its right. Therefore, the single-crossing property

holds.11 Finally, panel (d) shows the case of two uniform densities that are equal to each other

over an interval, but still satisfy the single-crossing property. Similarly, single-crossing is trivially

also guaranteed when the supports of X∗|Z = z1 and X∗|Z = z2 do not intersect. Of course,

Z does not need to shift the location of the distribution of X∗|Z, but it may arbitrarily affect

the shape of the distribution (as, for example, in (c)) as long as the single-crossing property is

maintained. The grey lines in the graphs represent the density pX∗|Z(·|z1) scaled by constants

c ∈ C. In the cases (a) and (b), there are weak conditions on the distribution of X|X∗ under

which pX|Z(·|z) is continuous over whole R, so that it is always possible to find a value x̄

for which pX|Z(x̄|z1) = pX|Z(x̄|z2) (e.g. as in Lemma 3). Then letting X be an arbitrarily

11Notice that Assumption 8 requires single-crossing only over the union of the two supports, outside of which

the two densities of course equal each other.
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small neighborhood of x̄, the set C simply becomes an arbitrarily small neighborhood of 1.

Therefore, the single-crossing property in Assumption 1(i) has to hold not only for pX∗|Z(·|z2)

and pX∗|Z(·|z1), but also for pX∗|Z(·|z2) and the slightly in- and deflated function c pX∗|Z(·|z1).

In the examples (c) and (d), this condition is trivially satisfied. In conclusion, the single-

crossing property trades-off the strength of the effect Z has on the distribution of X∗|Z and the

complexity of that distributions shape.

It is important to emphasize that we only need to find two sets Z1,Z2 for which single-

crossing holds, it does not have to hold for all values z1, z2 in the support of Z. If Z is discrete,

then Z1 and Z2 are just singletons each containing a different support point of Z. If Z is

continuous, then the two sets could be arbitrarily small neighborhoods around two values z1, z2

in the support of Z.

Under additional assumptions, the single-crossing property for ∆pc,z translates into single-

crossing of the observable difference pX|Z(·|z2)−pX|Z(·|z1) and can be nonparametrically tested

by testing the implication that the distribution of X|Z = z2 FOSD that of X|Z = z1. See

Appendix A.3 for more details.

In some models such as Kotlarski’s repeated measurement model (Kotlarski (1967)), it is

useful to write the single-crossing condition for the conditional density of Z|X∗ rather than of

X∗|Z. For c ∈ R and z = (z1, z2) ∈ Z1 ×Z2, define the function ∆p′c,z : SX∗ → R as

∆p′c,z(x
∗) := pZ|X∗(z2|x∗)− c pZ|X∗(z1|x∗).

Also, let C′ be the range of pZ|X(z2|x)/pZ|X(z1|x) as (x, z1, z2) varies over X × Z1 ×Z2.

Assumption 8′ (single-crossing). There are a constant cq > 0, an interval I ⊂ R, and a

set X ⊆ SX such that qX|X∗(x|x∗)qX∗(x∗) ≥ cq and P (Dc|X∗ = x∗) ≥ cq for all x ∈ X ,

x∗ ∈ X ∗ := I ∩ SX∗, zk ∈ Zk, k = 1, 2, and, for all c ∈ C′ and z ∈ Z1 ×Z2:

(i) ∆p′c,z is single-crossing,

(ii) ∆p′c,z(x
∗) ≥ cq for all x∗ ∈ X ∗.

Comments similar to those about Assumption 8 apply to Assumption 8′. Kotlarski’s model

is an important special case in which the single-crossing condition is satisfied under simple

primitive conditions. To see this consider the model

X = X∗ + ηX

Z = X∗ + ηZ

where ηX , ηZ , and X∗ are mutually independent and continuously distributed. In this case, the

single-crossing condition is trivially satisfied when ηZ is compactly supported. If the support

of ηZ is unbounded, then we need to add the requirement that the density of ηZ does not

oscillate until infinity. This is a weak requirement and we are not aware of any commonly used

distributions that violate it. The details can be found in Appendix B.2. Of course, the single-

crossing condition does not require the measurement error to be classical (independent of X∗).
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For example, it is easy to check that all nonclassical measurement error examples in Section 4

of Hu and Schennach (2008) satisfy the single-crossing condition.

We now state the second main result of this section, the sufficient conditions for the FOSD

requirement of Assumption 4.

Theorem 3 (FOSD under single-crossing). Any P for which there exist sets X ∗,X ,Z1,Z2

satisfying Assumptions 5–7 and either 8 or 8′ also satisfies Assumption 4.

Theorems 2 and 3 together imply that all P satisfying Assumptions 2–3, 5–7, and either

8 or 8′ are in MR. Even though MR is a more restrictive set than M, we argue that these

assumptions are fairly weak and allow for a wide range of realistic nonclassical measurement

error models (i.e. MR is “large”).

First, Appendix C provides simulation results for the test by Delgado and Gonzalez Manteiga

(2001), which we use in the empirical part (Section 5), and confirms that it possesses power

against several classical and nonclassical measurement error models that have been analyzed in

the literature.12

Second, measurement error models in MR can be close to the null along two dimensions:

the probability of no measurement error, λ, may be close to one and/or the measurement

error distribution, QX|X∗ , may be close to a pointmass at X∗. In this sense, Theorem 2 and

the sufficient conditions in Theorem 3 allow for a rich set of deviations from the null of no

measurement error.

Third, a test of (8) can recover all measurement error models in MR even though the

distribution P of (Y,X∗, X, Z) in MR is not identified. Of course, testing for the presence

of measurement error is a much more modest goal than identification of the distribution of

(Y,X∗, X, Z) and, thus, it is clear that the former can be achieved under weaker assumptions

than the latter. Testing HnoME
0 by testing (8) does not require solving for the distribution of

unobservables from the distribution of observables. Theorems 2 and 3 imply that this inversion

and thus identification of the true measurement error data-generating process is not necessary

for testing HnoME
0 . Instead it suffices to check whether the observed distribution is compatible

with the conditional independence in (8). In case of a violation, any distribution PX∗|Y,X,Z of

the unobservables conditional on the observables such that PY,X,Z × PX∗|Y,X,Z ∈ MR is then

a potential candidate for the true data-generating process. The test has power against all of

these alternatives, but is not able to point out which one generated the data. There are at least

two advantages of this approach. The first advantage is that we avoid some strong assump-

tions that have been employed for identification of measurement error models. In particular, we

12Similarly as in nonparametric specification testing problems, we expect there to be a trade-off between being

able to detect high- and low-frequency local alternatives (e.g. Fan and Li (2000), Horowitz and Spokoiny (2001)).

For testing conditional independence, we are not aware of any work that has provided a rate-optimal test. In

the simulations in Appendix C and the empirical part in Section 5, we therefore use the nonparametric test by

Delgado and Gonzalez Manteiga (2001) which can detect low-frequency local alternatives that converge to the

null at the fast n−1/2-rate.
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avoid completeness conditions on the distributions of X|X∗ and X∗|Z when X,X∗ are continu-

ous. These are restrictive (Santos (2012)), untestable (Canay, Santos, and Shaikh (2013)), and

required by even the most general identification results available (Hu and Schennach (2008)).

Theorem 3 does not impose completeness on X|X∗ and replaces the completeness of X∗|Z by a

single-crossing condition. The latter has a simple graphical interpretation, can be tested under

an additional assumption on the distribution of X|X∗ (Appendix A.3), and is compatible with

incomplete distributions X∗|Z (e.g. when X∗ is continuous and Z binary). The second advan-

tage is that not solving for the distribution of unobservables circumvents the need for somewhat

complicated estimators involving matrix inversions (in the discrete case; see Hu (2008)) or oper-

ator inversions (in the continuous case; see Hu and Schennach (2008)). These estimators may be

highly variable, especially in the continuous case in which convergence rates may be as slow as

a logarithmic function of the sample size. On the other hand, nonparametric estimation of the

conditional distribution in (8) is a significantly simpler statistical problem involving standard

estimators and faster convergence rates.

To gain some insight into why the theorem holds it is useful to consider the density of

PX∗|X,Z . By Assumption 7, there exists a function f such that P (D|X∗ = x∗, Z = z) = f(x∗),

and by Assumption 6 the density can then be written as

pX∗|X,Z(x∗|x, z) =
[
λf(x∗)δ(x− x∗) + (1− f(x∗))qX|X∗(x|x∗)

] pX∗|Z(x∗|z)
pX|Z(x|z)

,

where δ is a pointmass at zero. While FOSD in the distribution of X∗|Z = z for different values

of z does not translate into FOSD in X∗|X,Z = z, the single-crossing condition in Assumption 8

does carry over from X∗|Z to X∗|X,Z. We then use the fact that single-crossing of densities

implies FOSD of their cdfs. Formalizing this argument, in particular that strict dominance

in X∗|Z implies strict dominance in X∗|X,Z, requires some additional effort because of the

presence of the pointmass δ. The details are in Appendix E.

Remark 5 (additional controls). Similarly as in Remark 2, it is straightforward to extend

Theorem 3 to the case with additional, correctly measured covariates W . �

Remark 6 (mean independence). Similarly as in Remark 3, we can replace the exclusion re-

striction in Assumption 2 by the conditional mean independence

EP [µ(Y )|X∗, X, Z] = EP [µ(Y )|X∗] a.s., (14)

where µ is the same function as in Assumption 3. Theorem 2 then continuous to hold with (8)

replaced by (9). The relative advantage of Theorem 2 over the equivalence in this remark is that

the implementation of a test of (8), unlike (9), does not require knowledge of which conditional

moment (the function µ) is monotone in x∗. On the other hand, the result in this remark only

requires the weaker conditional mean independence. �
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2.3 Relationship to the Hypothesis of Exogeneity

In linear regression models, measurement error in the explanatory variable and any other source

of endogeneity manifest themselves in the same way, namely the correlation of the regressor with

the regression error. Therefore, standard instrumental variable methods are able to account for

both. In nonlinear models, measurement error and other forms of endogeneity require different

treatment because the measurement error introduces an additional unobservable in the outcome

equation that cannot be subsumed in the outcome equation errors (Schennach (2013)). In

particular, testing for exogeneity and testing for the presence of measurement error are two

distinct problems as we explain in more detail in the following paragraphs.

Exogeneity in the linear IV model. Testing (8) is related to but different from some

specification tests such as those by Durbin (1954), Wu (1973), and Hausman (1978). Specifically,

Hausman (1978) considers the linear regression model for Y and X∗ with the possibility of

classical measurement error in the observed regressor X and the availability of an instrument

Z. He shows that testing for the presence of measurement error is equivalent to (I) testing

whether OLS and IV estimands are equal, and to (II) testing whether the projection Z̃ of X

onto Z is statistically significant in a regression of Y on X and Z̃. The strategy in part (I)

could, in principle, be extended to our nonparametric problem of testing HnoME
0 by comparing

a standard kernel estimator of P (Y ≤ y|X = x) with a measurement error-robust estimator of

P (Y ≤ y|X∗ = x) (e.g. one of those surveyed in Chen, Hong, and Nekipelov (2011) or Schennach

(2013)). However, this procedure would require solving for the joint distribution of Y and the

latent variable X∗. This is particularly difficult in the case of continuous X∗ as estimators are

solutions to ill-posed inverse problems and therefore may be very imprecise. Directly testing (8)

on the other hand avoids such nonstandard and possibly imprecise estimators. In addition, the

approach based on solving for the distribution of unobservables would assume identification of

those distributions which in turn requires much stronger assumptions than those in Theorem 2.

Exogeneity in the nonparametric IV Model. Testing (8) is related to but different from

testing for exogeneity of a regressor in nonparametric instrumental variable models. Consider

the model Y = g(X) + ε where X is a potentially endogenous regressor and we observe an

instrument Z that satisfies E[ε|Z] = 0. The null hypothesis of exogeneity of X is E[ε|X] = 0. It

is easy to see that, under a completeness condition on the distribution of X|Z, this hypothesis

is equivalent to

E[E(Y |X)|Z] = E[Y |Z] (15)

which can be tested as in Blundell and Horowitz (2007), for example. Compare this hypothesis

to the conditional mean version of the observable restriction in Remarks 3 and 6. Under the

conditional mean independence (14) with µ(y) = y, (15) is implied by, but does not imply (9).

Therefore, (15) is not equivalent to the null of no measurement error and a test of exogeneity

such as that in Blundell and Horowitz (2007) is not consistent against all alternatives in MR
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violating HnoME
0 .

Exogeneity in the triangular model. Testing (8) is also related to testing exogeneity in

the triangular model

Y = ḡ(X, ε̄)

X = m̄(Z, η̄)
(16)

where ε̄ and η̄ are unobservables.

Assumption 9. (i) Z ⊥ (ε̄, η̄), where Z, η̄ and ε̄ are scalar random variables, (ii) ḡ(X, ·) is

strictly monotone with probability one and X a scalar random random variable, (iii) m̄(·, η̄) and

m̄(Z, ·) are both strictly monotone with probability one, (iv) η̄ is continuously distributed with a

cdf that is strictly increasing over the support of η̄.

This assumption contains the same conditions as Theorem 1 of Imbens and Newey (2009)

and two additional assumptions: monotonicity of ḡ(X, ·) and m̄(·, η̄), and the condition that ε̄

is scalar.

Lemma 1. In the triangular model (16), suppose Assumption 9 holds. Then:

ε̄ ⊥ η̄ ⇔ Y ⊥ Z | X.

This lemma shows that, under Assumption 9, exogeneity in the triangular model is equivalent

to conditional independence of Y and Z given X, the same condition as in (8).

In contrast, consider the triangular model with measurement error, which is studied in more

detail in Appendix B.3,

Y = g(X∗, ε) (17)

X∗ = mZ(Z, ηZ) (18)

where instead of X∗ we observe X,

X = mX(X∗, ηX) (19)

This model can be rewritten as a triangular model of the form (16) under the additional as-

sumption of strict monotonicity of mX(·, ηX) with probability one. Let m−1
X (·, ηX) denote the

inverse function of mX(·, ηX). Then (17)–(19) implies

Y = g(m−1
X (X, ηX), ε)

X = mX(mZ(Z, ηZ), ηX)

which becomes (16) with ε̄ = (ε, ηX), η̄ = (ηX , ηZ) and the implied choices for ḡ and m̄. In this

representation as a triangular model, Assumption 9(i) is violated by construction because ε̄ and

η̄ are both of dimension larger than one (unless g, mX , and mZ are all linear). Therefore, in the
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triangular model, testing for measurement error is not a special case of testing for exogeneity.

More generally, the set of maintained assumptions in Lemma 1 neither nest nor are nested

by the assumptions defining MR. In consequence, in the triangular model, the conditional

independence Y ⊥ Z | X can be interpreted as the hypothesis of exogeneity or as the absence

of measurement error under different sets of assumptions.13

3 The Null Hypothesis of Equal Functionals

The economic object of interest is often a functional of the conditional distribution of the outcome

variable Y given the explanatory variable X∗. In such cases, we might be more interested in

testing whether this functional is distorted by measurement error or not, rather than whether

there is any measurement error at all. In this section, we therefore consider the null hypothesis

of equal functionals,

Hfunc
0 : P ∈ Pfunc

0 (20)

versus Hfunc
1 : P ∈ P \Pfunc

0 where

Pfunc
0 := {P ∈ P : P (EP [ΛP (Y,X)|X∗, X] = 0) = 1}

and ΛP is a given function that may depend on P . Importantly, ΛP takes as arguments only

the observable variables Y and X, but neither X∗ nor Z. In this section, Y is allowed to be a

random vector.

For example, choosing ΛP (y, x) = y −EP [Y |X = x] and imposing the exclusion in Assump-

tion 2, the null hypothesis becomes a test for whether the true conditional mean of Y |X∗ is

equal to that of the observed conditional distribution Y |X,

P (EP [Y |X∗] = EP [Y |X]) = 1. (21)

Similarly, we could test equality of any other conditional moment of Y |X∗ and Y |X, e.g. entropy

as a measure of inequality in the conditional distribution:

P (EP [Y log(Y )|X∗] = EP [Y log(Y )|X]) = 1. (22)

To obtain an observable restriction that is equivalent to Hfunc
0 , we employ the exclusion

restriction from Assumption 2, the FOSD condition from Assumption 4, and the following

monotonicity condition that is similar to Assumption 3.

Assumption 10. There are sets X ∗ ⊆ SX∗ and X ⊆ SX so that, for every x ∈ X , the function

x∗ 7→ EP [ΛP (Y,X)|X∗ = x∗, X = x] exists, is monotone over SX∗ and strictly monotone over

X ∗.
13Notice, however, that the assumptions of Lemma 1, which justify the interpretation of exogeneity are fairly

strong, so there might be more attractive approaches to testing exogeneity in the triangular model.
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First notice that the null hypothesis is not a contradiction to x∗ 7→ EP [ΛP (Y,X)|X∗ =

x∗, X = x] being monotone (and non-constant). The important difference is that the mono-

tonicity holds in x∗ for a fixed value of x whereas, under the null, both X and X∗ vary together

so as to yield a zero conditional expectation.

In the conditional mean example of hypothesis (21), the monotonicity requires monotonicity

of the true conditional mean EP [Y |X∗ = ·]. Similarly as in the discussion of Assumption 3,

such a condition is often implied by economic theory when the conditional mean represents a

production, utility or cost function, for example.

Definition 4. Let Mfunc be the set of distributions P satisfying Assumption 2 and Mfunc
R the

set of P ∈Mfunc that also satisfy Assumptions 4 and 10, where the set X ∗ in Assumption 4 is

that of Assumption 10.

Theorem 4. (i) If P = Mfunc, then (20) implies

P (EP [ΛP (Y,X)|X,Z] = 0) = 1. (23)

(ii) If P = Mfunc
R , then P ∈ P satisfies (20) if, and only if, it satisfies (23).

The first part of Theorem 4 shows that the null hypothesis Hfunc
0 , which depends on unob-

servables, implies the observable restriction in (23), provided the exclusion holds. The observable

restriction can be tested similarly as the conditions in (8) and (9). A level-α test of (23) is thus

also a level-α test of Hfunc
0 .

The second part of the theorem shows that, under the additional conditions of monotonicity

and FOSD, the null hypothesis is equivalent to the observable restriction. The maintained

assumptions defining Mfunc
R are very similar to those in MR, so the comments on the generality

of the equivalence result following Theorem 2 apply here, too.

Failing to reject the hypothesis Hfunc
0 does not necessarily imply that there is no measure-

ment error in X but only that, if there is any, it does not affect the functional defining ΛP . In

fact, in a finite sample, a test may fail to reject the hypothesis even when measurement error

does affect the functional, but the distortion is small relative to sampling noise. In this sense, we

can use the test to find out whether measurement error leads to severe enough distortions for the

data being able to distinguish functionals based on true and mismeasured explanatory variables.

Testing Hfunc
0 for various functions ΛP then allows us to explore for which type of economic

questions measurement error matters and for which ones it does not. For example, measurement

error might affect the average level of Y (i.e. (21) is violated), but not inequality in Y (i.e. (22)

holds). In this case, policy questions depending on how a change in X∗ affects inequality in the

outcome can be answered without accounting for measurement error, but questions related to

the effect on average outcomes cannot.

Remark 7 (additional controls). Similarly as in Remarks 2 and 5, it is straightforward to extend

Theorem 4 to the case with additional, correctly measured covariates W . �
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Remark 8 (interpretation of the null). The null (21) can be interpreted as follows. For a

randomly drawn individual with true and observed characteristics X∗ and X, E[Y |X∗] and

E[Y |X] represent the (random) values of that individual’s true and observed conditional means

before X∗ and X are realized. The null hypothesis (21) then requires these two conditional

means to equal with probability one. It is important to note that this null is not equivalent to

the condition

EP [Y |X∗ = x] = EP [Y |X = x] for all x. (24)

In general, (24) neither implies nor is implied by (21). One difficulty with phrasing the null as

in (24), and which the formulation (21) avoids, is that, in general, the supports of X∗ and X

differ so that it is not clear for which values of x to require equality of the two moments. �

4 Recovering Measurement Error-Free Subpopulations

If we reject the null of no measurement error, it is not necessarily the case that X is mismeasured

for all individuals in the population. In particular, there may exist interesting subpopulations

that are free of measurement error and allow the researcher to carry out the intended analysis

on such a subpopulation without accounting for measurement error. In this section, we describe

a multiple testing procedure that recovers measurement error-free subpopulations from a set of

pre-specified subpopulations.

Suppose we divide the population into K subpopulations and let W ∈ {1, . . . ,K} be a

random variable that indicates subpopulation membership. For example, W could be a function

of individuals’ observable characteristics such as age, gender, education, and so on. Consider

the hypothesis of no measurement error in subpopulation k:

HnoME
0,k : P ∈ P0,k := {P ∈ P : P (X = X∗ |W = k) = 1}. (25)

Further, define I(P ) ⊂ {1, . . . ,K} to be the set of null hypotheses that are true under P , and

the family-wise error

FWEP := P
(
reject at least one HnoME

0,k : k ∈ I(P )
)
,

which is the probability that at least one true null hypothesis is rejected. We now describe a

testing procedure that asymptotically (in large samples) controls the FWEP at a nominal level

α while rejecting as many false hypotheses as possible.

Testing (25) is different from testingHnoME
0 in the presence of additional controls (Remarks 2

and 5) because the former hypothesis involves the conditional probability of measurement error

and the latter the unconditional probability. However, under very similar conditions, we can

show that HnoME
0,k holds if, and only if,

Y ⊥ Z | (X, {W = k}) (26)

Therefore, every subpopulation-specific null hypothesis HnoME
0,k can be tested using a test of

(26), e.g. any of those listed in Section 2.1.
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To control the FWEP when jointly testing all null hypotheses HnoME
0,k , k = 1, . . . ,K, we

need to adjust the critical values of the individual tests. Some well-known procedures such

the Bonferroni and Holm corrections (see the survey by Romano, Shaikh, and Wolf (2010), for

example), are particularly simple to implement, but we now briefly describe how to use the

StepM procedure in Romano and Wolf (2005, Algorithm 3.1), which may be considerably more

powerful.

The test statistic by Delgado and Gonzalez Manteiga (2001), which we use in the simulations

(Appendix C) and the empirical part (Section 5), is based on the Cramér-von Mises estimand

θk(P ) := EP [Tk(X,Z, Y )2]

with

Tk(x, z, y) := EP

[
pX|W (X|k)

{
1{Y ≤ y} − EP (1{Y ≤ y}|W = k,X)

}
ιx,z,k(X,Z,W )

]
and ιx,z,k(X,Z,W ) := 1{X ≤ x}1{Z ≤ z}1{W = k}. The null hypothesis HnoME

0,k is then

equivalent to

H0,k : P ∈ {P ∈ P : θk(P ) = 0}.

Written in this form the StepM procedure by Romano and Wolf (2005) can directly be applied.

The idea is to create a rectangular joint confidence set for θ1(P ), . . . , θK(P ) and then reject the

k-th hypothesis if the k-th dimension of the confidence set does not contain zero. In the second

step, we form a joint confidence set for those θk(P ) whose corresponding null hypotheses have

not been rejected in the first step. Then we reject all further hypotheses for which zero is not in

the relevant dimension of the new confidence set. We then iterate until no further hypotheses are

rejected. By Theorem 3.1 in Romano and Wolf (2005), this procedure asymptotically controls

the FWEP at a given nominal level and leads to a consistent test.14

As an outcome of the multiple testing procedure we obtain a set of null hypotheses HnoME
0,k

that are not rejected. These indicate the subpopulations for which the test does not find any

evidence of measurement error.

Remark 9. An and Hu (2012) show that if there is a pointmass at zero in the measurement error

distribution, then solving for the distribution of unobservables as a function of the distribution

of observables is a well-posed inverse problem. In consequence, estimators of the measurement

error model possess faster convergence rates compared to those in the ill-posed inverse problems

without a pointmass in the measurement error distribution. Since the multiple hypothesis testing

procedure described in this section recovers measurement error-free subpopulations, it could be

used as a way of providing evidence for An and Hu (2012)’s pointmass condition. �

Remark 10. If the researcher is interested in finding measurement error-free subpopulations

among a huge number of subpopulations (large K), then control of the FWEP may be too

14Delgado and Gonzalez Manteiga (2001) derive the limiting distribution of their test statistic and show that

a multiplier bootstrap consistently estimates it. Therefore, the conditions of Theorem 3.1 in Romano and Wolf

(2005) are satisfied.
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demanding in the sense that the resulting multiple hypothesis testing procedure may possess

poor power. In that case, one might want to choose a less demanding criterion such as those

described in Romano, Shaikh, and Wolf (2008), for example. �

5 The Reliability of Administrative Data

In this section, we test for measurement error in the U.S. Social Security Administration’s

measure of earnings. While measurement error in survey responses is a wide-spread concern

that has occupied a large literature (Bound, Brown, and Mathiowetz (2001)) only recently em-

pirical researchers have emphasized concerns about the reliability of administrative data (e.g.

Fitzenberger, Osikominu, and Völter (2006), Kapteyn and Ypma (2007), Abowd and Stinson

(2007), Groen (2011), Bollinger, Hirsch, Hokayem, and Ziliak (2018)). First, administrative

data is collected for the purpose of administration, which means that priorities in the data

collection process may differ from those of a researcher and thus variables may not measure

the economic concept a researcher would like them to capture. Second, a researcher typically

gains access to only a small number of variables of an administrative dataset which means they

have to be matched to other data sources containing, for example, more detailed demographics.

Anonymization of the administrative dataset implies that mistakes in the matching procedure

are difficult to avoid. Finally, firms may submit inaccurate earnings records to the administra-

tion. All these concerns lead to the possibility of observed administrative earnings deviating

from true earnings and thus to measurement error. Since the use of administrative data is

becoming increasingly popular in economics and researchers tend to view such datasets as free

of measurement problems, we believe testing for measurement error in this context is of direct

economic interest.

Earnings measures are used, for example, as dependent variable in human capital regressions

and appear as explanatory variable in unemployment duration, labor supply, and consumption

function models. Especially in the case of labor supply, there is compelling evidence that mea-

surement error in earnings has a first-order effect on empirical findings (e.g. Ashenfelter (1984),

Altonji (1986), Abowd and Card (1987)). The existing literature has argued that measurement

error in earnings is negatively correlated with true earnings and positively correlated over time

(e.g. Bound and Krueger (1991), Bound, Brown, Duncan, and Rodgers (1994), Bound, Brown,

and Mathiowetz (2001)). Although these stylized facts about the data-generating process of

the measurement error are based on a comparison of survey and administrative earnings data

and the assumption that the administrative data are measured without error (the assumption

we want to test in this section), they indicate at least that we should not rule out the possi-

bility of such nonclassical measurement error properties a priori. In addition, nonlinearities in

labor supply may be important (e.g. Blomquist and Newey (2002), Blomquist, Kumar, Liang,

and Newey (2015)). The combination of nonclassical measurement error and a nonlinear model

render identification and estimation of an econometric model that formally accounts for the

presence of measurement error difficult.
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Figure 2: Nonparametric density estimates, using cross-validated bandwidths.

As shown in previous sections, the proposed test of the null of no measurement error can

recover a broad class of nonclassical measurement error processes and, in the econometric spec-

ification described below, allows for dependence of measurement errors across time as well as

dependence of the measurement errors on the true level of earnings.

Data The data come from the 1978 Current Population Survey-Social Security Earnings

Records Exact Match File. The dataset contains a single cross section of survey data from

the 1978 March CPS file, including annual earnings for 1977 (“survey earnings”), linked with a

time series of social security earnings for several years leading up to and including 1977 (“ad-

ministrative earnings”). More detailed information about the dataset can be found in Bound

and Krueger (1991).

The original dataset contains 168,904 individuals. We restrict attention to individuals who

work either full- or part-time, have no other income source apart from salary and wages, have

positive administrative earnings, are an exact CPS-SER match, and are not top-coded (the

threshold was $16,500 in 1977). The resulting sample is of size 31,228. Table 4 in Appendix D

shows summary statistics before and after sample selection. As expected, keeping only full- and

part-time workers removes those who work less, thereby shifting the earnings and education

distribution upwards. Figure 2 displays nonparametric estimates of the density of survey and

administrative earnings in 1977, and of the difference of the two. The distribution of the differ-

ence is centered at zero, but possesses considerable probability mass at differences of more than

±$1, 000, indicating that one or both of the earnings measures are contaminated measures of

true earnings.
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Econometric Specification Let earnings in time period two, E∗2 , depend on earnings in time

period one through the following representation:

E∗2 = h(E∗1 , U2)

where U2 is some vector of unobservable shocks to earnings in period two. We observe a measure

of earnings in the administrative dataset in both time periods, potentially with error,

At = mAt(E
∗
t , ηAt), t = 1, 2,

and we observe another measure of earnings in a survey dataset in period two, potentially with

error,

S2 = mS2(E∗2 , ηS2).

In these representations, ηAt and ηSt are random vectors of measurement errors in the admin-

istrative and survey measures, respectively. Suppose h(·, U2) is invertible with probability one

with inverse function h−1(·, U2), then the model can be written as

S2 = mS2(E∗2 , ηS2)

A2 = mA2(E∗2 , ηA2)

A1 = mA1(h−1(E∗2 , U2), ηA1)

which fits into the framework of Section 2 with Y = S2, X∗ = E∗2 , X = A2, Z = A1, with

measurement errors in Z and X defined as ηZ = (U ′2, η
′
A1)′ and ηX = ηA2, respectively. The

exclusion restriction in Assumption 1 holds if, under P ,

ηS2 ⊥ (ηA1, U2) | E∗2 . (27)

This condition requires the measurement error in the survey to be independent of the lagged

measurement error in the administrative data, conditional on true earnings. This means that

both measurement errors are allowed to be nonclassical, i.e. depend on the true level of earnings.

This is important as existing work has argued for high-earners under-reporting and low-earners

over-reporting their earnings (Bound, Brown, and Mathiowetz (2001)). The conditional inde-

pendence therefore allows the measurement errors from the two datasets to depend on each other

through the true earnings, but rules out direct dependence. We now argue why we believe this

exclusion restriction to be reasonable. First, since the data collection in surveys and administra-

tive data follow different protocols and are carried out by different individuals at different points

in time, the sources of measurement errors are likely to be quite different. Second, our sample

excludes workers who reported income other than salary and wages, e.g. tips and other side

payments. Therefore, measurement errors in the survey and administrative earnings are unlikely

to depend on each other because they both fail to fully include such forms of income. Notice

also that the assumption (27) does not restrict the dependence of ηA1 and ηA2, which means the

administrative measurement errors may be arbitrarily dependent over time, even conditional on

27



2000 4000 6000 8000 10000 12000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

(a) conditional density of X|Z

X=admin

tau=0.2
tau=0.5
tau=0.8

X=admin

5000

10000

15000

Z
=lagged adm

in

5000

10000

15000

5000

10000

(b) conditional mean of Y|X,Z

Figure 3: Panel (a) is showing a nonparametric estimate of the conditional density of X|Z = q for q being the

τ -quantile of Z and different values of τ . X and Z are administrative earnings in 1977 and 1976, respectively.

Panel (b) shows a nonparametric estimate of E[Y |X,Z], where Y is survey earnings in 1977, X is administrative

earnings in 1977, and Z is administrative earnings in 1976. All bandwidths are chosen by cross-validation.

true earnings. (27) also requires the measurement error in the survey to be independent of the

shock to earnings in the second period, U , conditional on E∗2 . This means the measurement

error can depend on the shock, but only through contemporary earnings themselves.

The observable implication under the null of no measurement error and the exclusion re-

striction (27) then becomes

S2 ⊥ A1 | A2. (28)

One might be concerned that (27) is violated because high earnings growth could cause an

individual to be less certain about the exact value of earnings, leading to measurement error in

survey earnings that depends on the growth in true earnings.15 To investigate this possibility,

suppose there is an additional time period t = 0 before period t = 1 and replace the exclusion

restriction in (27) by

ηS2 ⊥ (ηA0, U1, U2) | (E∗2 , E∗2 − E∗1), (29)

which allows for survey and administrative measurement errors to depend not only on the level

of of true earnings but also on its growth. The null of no measurement error in periods t = 1, 2

then yields the observable restriction

S2 ⊥ A0 | (A2, A2 −A1). (30)

See Appendix D for more details. We report results for tests of both restrictions, (28) and (30).

15See Appendix D for more details on why this leads to a violation of (27).
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level growth

p-value h p-value h1 h2 n

full sample 0.000 287.6 0.000 519.9 866.8 31,228

earnings in IQR 0.000 251.8 0.015 421.9 758.7 15,614

white males 0.000 127.1 0.000 691.3 1,055.0 12,591

+ singles 0.000 340.5 0.000 348.3 1,173.6 5,043

+ age ≥ 25 0.039 908.4 0.510 896.9 5,077.2 1,738

+ full-time, full-year 0.027 997.0 0.695 897.1 ∞ 985

+ at least highschool 0.026 827.7 0.813 464.5 2,424.3 877

+ earnings in IQR 0.015 758.0 0.109 168.5 1,892.2 346

Table 1: Test results for the null of no measurement error in 1977 administrative earnings based on (28) (“level”)

and (30) (“growth”). The table shows the p-value, the bandwidths chosen by cross-validation (“h”, “h1”, “h2”),

and the sample size (“n”).

Implementation We test the hypothesis of no measurement error as in Remark 3 by testing

the observable restriction (9) for µ(y) = y. We use the Cramér-von Mises test statistic in Delgado

and Gonzalez Manteiga (2001) with the Epanechnikov kernel and the bandwidth chosen by cross-

validation for the regression of Y on X. Critical values are computed by the multiplier bootstrap

based on 1, 000 bootstrap samples and multipliers drawn from the two-point distribution in

Härdle and Mammen (1993).

Results Panel (a) of Figure 3 provides empirical evidence for the relevance condition. It

shows a nonparametric estimate of the conditional density of administrative earnings in 1977

given administrative earnings in 1976 being equal to their 0.2-, 0.5-, or 0.8-quantile. Moving the

conditioning variable from its 0.2- to the 0.8-quantile induces a shift in the conditional density

that is consistent with the single-crossing condition in Assumption 8 (Appendix A.3).

Panel (b) of Figure 3 shows a nonparametric estimate of the conditional mean of survey

earnings given contemporary and lagged administrative earnings. If there was no measurement

error in administrative earnings in 1977, then the conditional mean surface should not vary with

lagged administrative earnings. The graph shows some variation in that dimension, but it is

difficult to judge whether this variation is due to measurement error or just sampling noise.

Table 1 shows the results of the formal test based on the full sample (first row) and various

subsamples (other rows). The columns denoted by “level” refer to the test of (28) and those

denoted by “growth” to that of (30). The second line restricts the sample to those individuals

with earnings in the interquartile range, thereby removing individuals in the extreme quartiles.

The third row considers only white males and, in subsequent rows, this sample is then further

narrowed by adding more and more restrictions. In the first four samples, the p-values of both

the “level”- and the “growth”-test are numerically zero, which means we strongly reject the

null of no measurement error. For the remaining subsamples, the “level”-test produces p-values

that are positive, but below 4%, so we continue to reject the null at reasonable confidence levels

even though the sample size drops to 346. The “growth”-test on the other hand produces large
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small h large h Z from 1975 Z from 1974 n

full sample 0.000 0.000 0.000 0.000 31,228

earnings in IQR 0.000 0.000 0.000 0.000 15,614

white males 0.000 0.000 0.000 0.000 12,591

+ singles 0.000 0.000 0.000 0.000 5,043

+ age ≥ 25 (*) 0.056 0.033 0.054 0.160 1,738

+ full-time, full-year 0.029 0.020 0.036 0.119 985

+ at least highschool 0.015 0.022 0.030 0.142 877

+ earnings in IQR 0.019 0.003 0.089 0.159 346

Table 2: Sensitivity analysis: testing for presence of ME in administrative earnings 1977; the table shows p-

values for four cases: using a bandwidth that is 3/4 times the optimal cross-validated one (“small h”), using a

bandwidth that is 5/4 times the optimal cross-validated one (“large h”), using for Z administrative earnings in

1975 (“Z from 1975”), and using for Z administrative earnings in 1975 (“Z from 1974”).

p-values for the subsamples in which age is restricted to at least 25 years: it jumps from zero

without the age restriction to 51% with the age restriction. Further restrictions to individuals

in full-time, full-year work, and with at least a highschool degree lead to even higher p-values.

These findings are consistent with the presence of young individuals having high earnings growth

(in absolute terms) that leads to measurement error in the survey. Such dependence leads

to a violation of the testable restriction (28) and thus to a false rejection of the null of no

measurement error in the “level”-test that excludes young individuals. Interestingly, the p-value

of the “growth”-test decreases from 81% down to 11% when we impose the additional restriction

of earnings lying in the inter-quartile range. This finding is consistent with measurement error

in administrative earnings being mainly due to young individuals with high earnings growth (in

absolute terms) and earnings level outside the lower or upper quartile.

Sensitivity Analysis – Bandwidths The first two columns of Table 2 show the p-values

for the “level”-tests as in Table 1 but using 3/4 times (“small h”) and 5/4 times (“large h”)

the cross-validated bandwidth. The p-values barely change compared to those in Table 1 and

remain under or around 5%, providing further evidence for the presence of measurement error

in all subsamples.

Sensitivity Analysis – Definition of Z The third and fourth columns of Table 2 report the

test results when using as Z administrative earnings in years 1975 and 1974. The p-values in

the first four samples remain numerically zero, but increase more sharply as we start restricting

the age of individuals, especially when Z is chosen from the 1974 data. In that case, the p-value

climbs above 10%. To investigate potential reasons, Figure 4 shows nonparametric estimates

of the conditional density of X|Z and of the conditional mean of Y |X,Z estimated on the

subsample (*). The conditional mean of Y |X,Z appears flat in the Z-dimension (panel (b)),

which is consistent with the absence of measurement error. However, there are two alternative

potential reasons explaining the lack of variation in the conditional mean surface. First, the
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Figure 4: Sensitivity analysis for the restricted sample (*) in Table 2. Panel (a) is showing a nonparametric

estimate of the conditional density of X|Z = q for q being the τ -quantile of Z and different values of τ . X

and Z are administrative earnings in 1977 and 1974, respectively. Panel (b) shows a nonparametric estimate of

E[Y |X,Z], where Y is survey earnings in 1977, X is administrative earnings in 1977, and Z is administrative

earnings in 1974. All bandwidths are chosen by cross-validation.

sample size is smaller than in the full sample, which typically lets cross-validation choose a

larger bandwidth and therefore leads to more smoothing. This means that the sampling noise in

the smaller sample makes it harder to detect nonlinearities. Since the smaller sample size does

not lead to such large p-values in Table 1, this is likely only a partial explanation. A second

reason is the possibility that the relationship between true earnings X∗ and administrative

earnings Z from the distant past is weaker than for Z from the less distant past. Figure 4(a)

shows that the two conditional distributions for τ = 0.2 and τ = 0.8 still cross only once, which

is consistent with the single-crossing condition in Assumption 8 (Appendix A.3), but compared

to the corresponding distributions with Z from 1976 there is significantly more probability mass

in the intersection of their supports. One might interpret this finding as Z from 1974 possessing

a “weaker” relationship to X∗ than the Z from 1976. Therefore, it is likely the case that Z from

1974 induces less variation in Y than does Z from 1976, which could manifest itself in the flatter

conditional mean surface and does not necessarily imply that there is no measurement error.

On balance, we therefore view the results of the sensitivity analyses as confirming the dis-

covery of measurement error in administrative earnings present in Table 1.

6 Conclusions

In this paper, we propose a simple nonparametric test of the null hypothesis of no measurement

error and of the null hypothesis that the measurement error, if there is any, does not distort

a given object of interest. We argue that the hypothesis of no measurement error may be

31



of direct interest to the economist because, in some economic models, it corresponds to the

hypothesis of no frictions. On the other hand, one could also test the null of no measurement

error for the purpose of model selection, which precedes an intended empirical analysis on the

same dataset. In that case, inference in the second step remains valid for fixed data-generating

processes because the test of no measurement error is a consistent test. Of course, the second

step inference incurs the usual uniformity problems as in Leeb and Pötscher (2005), but it

would be possible to develop uniformly valid post-model selection inference similar to the recent

developments on selective inference (e.g. Tibshirani, Taylor, Lockhart, and Tibshirani (2016),

Tian and Taylor (2017), Tibshirani, Rinaldo, Tibshirani, and Wasserman (2018)). The idea is to

derive the joint limiting distribution of the test statistic in the first-step and the estimator used

after model selection under sequences of drifting data-generating processes. This is easy, for

example, in the misclassification model of Appendix B.1 combined with the measurement error-

robust estimator of Mahajan (2006) where we obtain joint normality. Then we can compute

the second-step estimator’s limiting distribution conditional on either having rejected or failed

to reject the null of no measurement error and use this limiting distribution for uniformly valid

inference conditional on the outcome of the first-step test.
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A Remarks on the Null of No Measurement Error

A.1 Flipping the Null

In some situations, one might be interested in testing the “flipped” null hypothesis of some

measurement error against the alternative hypothesis of no measurement error. A rejection of

this null would be direct evidence of the absence of measurement error. Similarly as in Bahadur

and Savage (1956) and Romano (2004) we conjecture that the flipped null is untestable because

the set of distributions in the alternative lie in the closure of those satisfying the null. Therefore,

one would have to test the null that there is measurement error bounded away from the no-

measurement error case against the alternative of no measurement error. This specification of

the null introduces a host of new difficulties. First, one would have to specify a metric in which

to bound the measurement error away from the no-measurement error case (e.g. the variance of

measurement error or the support of the measurement error distribution). Second, one would

have to specify the level of this bound. The resulting test would then possess more or less power

depending on these two user-specific choices and be susceptible to users choosing these to reach a

desired testing outcome. Third, in practice, constructing the set of null distributions that satisfy

the bound would require solving for (features of) the distribution of unobservables, which in the

continuous case amounts to solving ill-posed inverse problems. For this to be possible, one would

re-introduce some of the assumptions necessary for identification together with the statistical

difficulties that arise from ill-posedness.

All of these complications can be avoided by testing the null of no measurement error against

the alternative of some measurement error. In particular, the testing approach proposed in this

paper is valid under weak assumptions (much weaker than those necessary for identification),

easy to implement in practice, and does not require any user-chosen parameters to specify the

null hypothesis. Even if the researcher may be more interested in testing the flipped null, the

costs listed above most likely outweigh the benefits. Instead, it may be preferable to use the

approach in this paper combined with a test of (8) that is known to possess desirable power

properties. Then, one can at least be confident that failing to reject the null of no measurement

error is due to the lack of evidence against it in the data, rather than the use of an inferior test

(see Footnote 12 on this point).

A.2 Equivalence in the Multivariate Case

The result in Theorem 2 can be extended to the case of a multivariate explanatory variable

X∗ = (X∗1 , . . . , X
∗
dx

)′ in at least two different ways. The first approach would be to replace the

FOSD condition in (11) by

P (X∗ ∈ A|X = x, Z = z1) ≤ P (X∗ ∈ A|X = x, Z = z2) (31)
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for every increasing set16 A and similarly for the condition (12). The monotonicity in Assump-

tion 3 then becomes that the conditional expectation is increasing or decreasing as we increase

x∗, where an inequality for a vector x∗ means that each element satisfies the inequality. One

could also replace (31) by the marginal FOSD condition

P (X∗d ≥ x∗d|X = x, Z = z1) ≤ P (X∗d ≥ x∗d|X = x, Z = z2)

for each dimension d = 1, . . . , dx and then assume that the copula of the vector X∗, conditional

on X = x, Z = z, is the same for z ∈ Z1 and for z ∈ Z2 (Scarsini (1988b)).

A second approach is to keep the FOSD conditions in (11) and (12), where again an in-

equality between two vectors means that the inequality is satisfied element-by-element, and

then replace the monotonicity condition in Assumption 3 by a suitable concept of multivariate

monotonicity. Two such possibilities are the concepts of ∆-monotonicity by Rüschendorf (1980)

and the definition of multivariate risk aversion in Scarsini (1988a).

A.3 Testing the Single-Crossing Condition

The relevance condition in Assumption 8 cannot directly be tested as it is a condition on the

joint distribution of the latent variable X∗ and the observable Z. However, under an additional

restriction on the distribution of X|X∗, it is possible to convert this assumption into an observ-

able, testable restriction. It is well-known in the statistics literature (e.g. Karlin and Rubin

(1956); Karlin (1968)) that the single-crossing property is preserved under mixing with respect

to a log-supermodular density. Specifically, consider the case in which X∗, X are continuously

distributed and Assumptions 6–8 hold. Then, pX|X∗,Z = pX|X∗ and

pX|Z(x|z2)− pX|Z(x|z1) =

∫
pX|X∗(x|x∗)

[
pX∗|Z(x∗|z2)− pX∗|Z(x∗|z1)

]
dx∗

is single-crossing in x if pX|X∗(·|·) is log-supermodular. This is a condition that can be graphically

assessed and nonparametrically tested. For example, the single-crossing property implies that

one of the two distributions of X|Z = z2 and X|Z = z1 FOSD the other (see the proof of

Theorem 3). There exists a large number of nonparametric tests for this implication (e.g.

McFadden (1989), Barrett and Donald (2003); Linton, Maasoumi, and Whang (2005), Lee,

Linton, and Whang (2009), Chetverikov, Kim, and Wilhelm (2018) among many others).

A.4 Endogeneity

The exclusion restriction in Assumption 1 allows for endogeneity in the following sense. Consider

a representation of the outcome model of the form Y = g(X∗, ε), where ε is a vector containing

all other determinants of the outcome beyond X∗. Assumption 1 is then equivalent to ε ⊥ Z | X∗

which means ε may be a function of X∗ and thus endogenous.

16A set is increasing if its indicator function is.
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However, the exclusion restriction is not necessarily compatible with a triangular structure

X∗ = h(Z,U) as in Imbens and Newey (2009). Their Theorem 1 requires the unconditional

independence condition ε ⊥ Z rather than the conditional independence ε ⊥ Z | X∗ required

in this paper. Economic justifications for why an instrument Z is excluded from an outcome

equation do not recognize this subtle difference and could therefore be used to motivate either

assumption. Nevertheless, since triangular models have been studied extensively, it is interesting

to see under which conditions they are compatible with our exclusion restriction. First, this is

the case when there is no endogeneity, i.e. U ⊥ ε. Second, suppose, in addition to Y , X, and

Z, we observe a second measurement W of X∗. In that case, our exclusion restriction can be

imposed on W (i.e. Y ⊥W | X∗) instead of Z. Then, the dependence between ε and U may be

left unrestricted, restoring compatibility with endogeneity generated by triangular models such

as Imbens and Newey (2009). See Appendix B.3 for details.

B Sufficient Conditions for Specific Measurement Error Models

In this section, we provide sufficient conditions for data-generating processes to satisfy the re-

strictions in MR and discuss the assumptions in the context of economic examples. We start

with a binary misclassification model and the continuous repeated measurement framework,

more restrictive versions of which have been extensively studied in the measurement error lit-

erature. The third is a triangular instrumental variable model. To the best of our knowledge,

none of these examples can be identified or consistently estimated using existing results unless

further restrictions are imposed. However, testing (7) is possible in each one of them.

B.1 Binary Misclassification Model

Consider the case in which X∗, X, and Z are binary, but the support of Y is unrestricted.

There are many economic examples that fit this setup and in which existing studies have raised

concerns about measurement error in X. Well-known examples include studies of the effect of

union status on wages (Card (1996)) and of the returns to college (Kane and Rouse (1995);

Kane, Rouse, and Staiger (1999)).

Assumption B1. SX = SX∗ = SZ = {0, 1} and SX,Z = {0, 1}2.

Assumption B2. 0 < P (X∗ = 1|Z = 0) < P (X∗ = 1|Z = 1) < 1

Assumption B3. There is a measurable function µ : SY → R so that EP [µ(Y )|X∗ = 0] 6=
EP [µ(Y )|X∗ = 1].

Assumption B4. Under P , X ⊥ Z | X∗.

By the definition of the support, each random variable X, X∗, Z has to attain 0 and 1

with positive probability. Assumption B2 rules out the case in which Z perfectly predicts X∗

and requires a monotone relationship between X∗ and Z in the sense that the larger value of
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X∗ is more likely to occur when Z also attains the larger value. This is a relevance condition

that ensures X∗ and Z are sufficiently related and, together with Assumption B4 implies the

FOSD condition of Assumption 4. Assumption B3 requires that some moment of Y conditional

on X and X∗ = x∗ varies with x∗. Assumption B4 is the same as Assumption 6 except that

the we impose the conditional independence directly on P rather than separately on Q (as in

Assumption 6) and the probability of measurement error (as in Assumption 7).

Example 1 (effect of unions on the structure of wages). In Card (1996), the outcome Y is an

individual’s wage in period t, X∗ is union status in period t, X is reported union status in period

t, and Z is reported union status in period t − 1. To simplify the discussion suppose there are

no additional covariates in the outcome equation. Assumption B2 requires that if an individual

reports to be unionized in period t−1, then the individual is more likely to actually be unionized

in period t than not. Assumption B3 means that union status has an effect on some conditional

moment of wages. Finally, letting Z∗ be union status in period t− 1, Card (1996) assumes that

pX,Z|X∗,Z∗ = pX|X∗pZ|Z∗ , which implies Assumption B4. �

Assumption B2 implies

P (X∗ = 1|Z = 0)P (X∗ = 0|Z = 1) < P (X∗ = 1|Z = 1)P (X∗ = 0|Z = 0).

Multiplying both sides by P (X = 1|X∗ = 1)P (X = 1|X∗ = 0) and dividing by P (X = 1|Z =

1)P (X = 1|Z = 0) then yields

P (X∗ = 1|X = 1, Z = 0)P (X∗ = 0|X = 1, Z = 1)

< P (X∗ = 1|X = 1, Z = 1)P (X∗ = 0|X = 1, Z = 0), (32)

which means that (x∗, z) 7→ P (X∗ = x∗|X = 1, Z = z) is a log-supermodular function. This

property is well-known to imply the FOSD of Assumption 4.17 We therefore obtain the following

result.

Lemma 2. Any P satisfying Assumptions 2, B1–B4 is in MR.

Since distributions satisfying Assumptions 2, B1–B4 are in MR, Theorem 2 implies that, for

such distributions, (7) is equivalent to (8). Therefore, a test of (8) rejects against and, in turn,

is able to recover any binary misclassification model satisfying Assumptions 2, B1–B4.

Remark 11. If, in Lemma 2, Assumption 2 is replaced by mean independence as in Remark 3,

then the statement continues to hold. This result is related to Lemma 4 in Mahajan (2006). In

the absence of correctly measured covariates in the outcome equation, Mahajan (2006)’s result

is a special case of Lemma 2 as he assumes, in addition, that µ(y) = y and that misclassification

is not too severe in the sense that P (X = 1|X∗ = 0) + P (X = 0|X∗ = 1) < 1. �
17Simply add P (X∗ = 1|X = 1, Z = 0)P (X∗ = 0|X = 1, Z = 1) to both sides of (32) and set X ∗ = X = Z2 =

{1}, Z1 = {0}.
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B.2 Continuous Repeated Measurements

Consider the case of a general outcome model

Y = g(X∗, ε) (33)

in which X and Z are repeated measurements of a continuous explanatory variable X∗ with

additively separable measurement errors:

X = X∗ + ηX (34)

Z = X∗ + ηZ (35)

We focus the discussion of this section on applications to the study of production functions

with latent inputs such as cognitive and noncognitive skills (e.g. Cunha, Heckman, and Schen-

nach (2010), Heckman, Pinto, and Savelyev (2013), Attanasio, Cattan, Fitzsimons, Meghir, and

Rubio-Codina (2015), Attanasio, Meghir, and Nix (2017) among many others),18 but there are

many other examples in which the above model has been used, e.g. for estimation of Engel curves

(Hausman, Newey, and Powell (1995)) or in the context of earnings dynamics (Horowitz and

Markatou (1996), Bonhomme and Robin (2010), Arellano, Blundell, and Bonhomme (2017)).

Remark 12. In a typical application, X and Z could for instance be two different test scores

attempting to measure the same type of skill or test scores from the same test conducted in

two different periods. Therefore, the absence of measurement error in one of the two measures

does not necessarily imply the absence of measurement error in the other and our hypothesis

HnoME
0 , which is only involving one of the two measures, cannot be tested by simply checking

whether the variance of X − Z is zero or not. �

First, we directly impose the exclusion and monotonicity assumptions from Section 2.2.

Assumption RM1. ε ⊥ (ηX , ηZ) | X∗ under P .

This is the exclusion restriction of Assumption 2 rephrased in terms of the errors in the

model (33)–(35).

Assumption RM2. The monotonicity condition, Assumption 3, holds.

The remaining assumptions restrict the measurement system (34)–(35) and, apart from one

regularity condition, are implied by the conditions of the well-known model by Kotlarski (1967)

and its extension by Evdokimov and White (2012). This is perhaps the most-studied mea-

surement error model in the econometrics literature and, in particular, the standard model for

empirical work related to the technology of skill formation19, so it may be instructive to see how

it fits into the framework of this paper.

18Some of the studies cited here do in fact consider a generalization of (34)–(35) that includes a coefficient in

front of X∗ and an intercept. The discussion in this section trivially extends to that case.
19Subject to the comment in Footnote 18.
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Assumption RM3. (i) PX∗,ηX ,ηZ has a continuous density with respect to Lebesgue measure

on R3, is supported over some Cartesian product of intervals (each possibly equal to R), and

satisfies (34)–(35). (ii) There exists c ∈ R such that the density pηZ (η) is monotone for all

|η| > c.

The first part assumes that the variables X∗, ηX , ηZ and thus also X and Z are continuous.

In consequence, there is no pointmass in the distribution of ηX , so the whole population contains

some measurement error in X (the measurement error distribution may, of course, be arbitrarily

tightly centered around zero). The second part requires that the density of the measurement

error ηZ becomes monotone, at least for large enough values. This condition rules out densities

that oscillate until infinity, but allows arbitrarily many oscillations over a bounded subset of R.

We are not aware of any common distribution that violates this condition. As a special case all

compactly supported distributions trivially satisfy it.

Assumption RM4. X∗, ηX , ηZ are mutually independent under P .

Mutual independence of X∗, ηX , ηZ implies classical measurement error in both measure-

ments X and Z. This is a strong assumption, but nevertheless is imposed in all empirical work

studying the technology of skill formation that we are aware of.

The Assumptions RM3–RM4 are implied by Kotlarski’s model except part (ii) of Assump-

tion RM3. It should be mentioned, however, that identification of Kotlarski’s model requires

additional assumptions.20

Example 2 (technology of skill formation). Most recent papers (e.g. those cited above) in the

literature on identification and estimation of the technology of skill formation make very similar

assumptions about the measurement error in observed inputs. For concreteness, consider one

particular paper by Attanasio, Cattan, Fitzsimons, Meghir, and Rubio-Codina (2015). In their

setup, we could test for measurement error in, say, cognitive skills by letting X, Z, and Y be

three measures of cognitive skills. For example, let Y be an assessment by a trained psychologist

(e.g. the Bayley test) and X and Z be measurements reported by the mother of the child (e.g.

the scores on the Early Children’s Behavior Questionnaire and on the Infant Characteristics

Questionnaire). Since the mother’s reports are collected by an interviewer, at the mother’s

home on a different day than the psychologist’s measurement which took place at a community

center, the measurement errors in Y and (X,Z) have very different origins. This justifies the

exclusion restriction, Assumption RM1. Attanasio, Cattan, Fitzsimons, Meghir, and Rubio-

Codina (2015) also directly assume that the measurement errors in X and Z are classical and

independent of each other (Assumption RM4). The monotonicity in Assumption RM2 follows

from the linearity in the measurement system and the assumption that the measurement errors

are classical. Finally, they specify the joint distribution of X∗, ηX , ηZ to be normal which implies

Assumption RM3 as a special case. �
20Evdokimov and White (2012) also require the characteristic function of one of the measurement errors ηX , ηZ

to possess only isolated zeros, some restrictions on the characteristic function (and its derivative) of the other

measurement error, and measurement error that is mean zero. These assumptions are not imposed here.
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Lemma 3. Any P satisfying Assumptions RM1–RM4 is in MR.

Since distributions satisfying Assumptions RM1–RM4 are in MR, Theorem 2 implies that,

for such distributions, (7) is equivalent to (8). Therefore, a test of (8) rejects against and, in turn,

is able to recover any Kotlarski-like measurement system satisfying Assumptions RM1–RM4.

As the discussion of Assumptions 8 and 8′ showed, the measurement error models in MR do

not have to be classical as in Assumption RM4 above. In particular, the measurement errors

are allowed to depend on each other through the latent explanatory variable X∗. For example,

the nonclassical measurement error models of Section 4 in Hu and Schennach (2008) are of the

form

X = X∗ + σ(X∗)UX

Z = X∗ + σ(X∗)UZ

where σ is a monotone function and UX , UZ , X
∗ are mutually independent. Their examples also

satisfy the single-crossing condition in Assumption 8′ and lead to distributions in MR.

We now want show that, in addition, we can even allow for some forms of direct dependence

between the measurement errors. To make this point, we introduce an “individual-specific effect”

into the measurement errors of the repeated measurement model above:

X = X∗ + α+ UX (36)

Z = X∗ + α+ UZ (37)

where α is an (unobserved) individual-specific effect and UX and UZ are mutually independent

errors that are also independent of X∗ and α. In this model, ηX = α + UX and ηZ = α +

UZ . The reason for why α is not simply absorbed by X∗ is that the exclusion restriction in

Assumption RM1 holds conditional on X∗ rather than X∗ + α, reflecting the fact that X∗,

rather than X∗ + α, is the explanatory variable that determines Y . For example, when X and

Z are survey responses, the individual-specific effect could represent an individual’s ability to

correctly remember the answer to the survey question. The way an individual misreports X is

then likely similar to the way she misreports Z.

Assumption RM5. (i) PX∗,α,UX ,UZ
has a continuous density with respect to Lebesgue measure

on R4, is supported over some Cartesian product of intervals (each possibly equal to R), and

satisfies (36)–(37). (ii) There exists c ∈ R such that the density pUZ
(u) is monotone for all

|u| > c.

Assumption RM6. Under P , UX , UZ are independent and jointly independent of (X∗, α).

Assumption RM7. (x∗, v) 7→ pα|X∗(v − x∗|x∗) is log-supermodular21.

21A function f : R2 → R is called log-supermodular if for any x1, x2, y1, y2 ∈ R with x1 ≤ x2 and y1 ≤ y2,

f(x1, y2)f(x2, y1) ≤ f(x1, y1)f(x2, y2).
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If the density pα|X∗ is twice-differentiable, then it is log-supermodular in the above sense if

∂2 log pα|X∗(v − x∗|x∗)/∂x∗∂v ≥ 0. In the special case in which α is independent of X∗, i.e. α

is a “random effect” according to the language of panel data models, the condition holds for

most well-known members of the exponential family (in particular the normal distribution), the

uniform distribution, and is preserved by multiplication, convolution, marginalization and other

operations on densities (see, e.g., Saumard and Wellner (2014)).

Lemma 4. Any P satisfying Assumptions RM1–RM2, RM5–RM7 is in MR.

Since distributions satisfying Assumptions RM1–RM2, RM5–RM7 are in MR, Theorem 2

implies that, for such distributions, (7) is equivalent to (8). Therefore, a test of (8) rejects against

and, in turn, is able to recover any measurement system (36)–(37) satisfying those assumptions.

B.3 Triangular Instrumental Variable Model

Consider the following triangular structure

Y = g(X∗, ε) (38)

X∗ = mZ(Z, ηZ) (39)

where instead of X∗ we observe X,

X = mX(X∗, ηX) (40)

and the unobservables ε, ηX , and ηZ may be random vectors. This model is a generalization of

the measurement error model in Schennach (2007) in which Z is an instrumental variable for the

explanatory variable X∗. The linear version of this measurement error model, i.e. g,mX ,mZ are

linear in all arguments, is commonly used in applied work. The nonlinear version, however, is

not.22 In particular, we are not aware of any work showing identification of the nonlinear model

when X∗, X are continuous, but Z is binary. This case is of practical importance as instruments

in empirical work tend to be discrete or binary.

Assumption IV1. Assumption 5 holds.

Notice that the instrument Z may be binary even when X∗, X are continuous.

Assumption IV2. Under P : (i) ε ⊥ (Z, ηX , ηZ) and (ii) ηX ⊥ (Z, ηZ).

Part (i) of this assumption requires the usual exclusion restriction in triangular models, i.e.

that the instrument Z is independent of the error ε in the outcome equation. In addition,

however, it also requires independence between the latter and the measurement errors. In

repeated measurement models (such as those in Section B.2), it is common to assume some

22There are somewhat more technical papers showing identification of the nonlinear model when X∗, X, Z are

continuous, which include empirical applications, e.g. Song, Schennach, and White (2015), De Nadai and Lewbel

(2016), il Kim and Song (2018).
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form of independence between the measurement errors and the structural error ε, but in the

triangular model (38)–(40) it implies that X∗ is independent of ε, thereby ruling out endogeneity

of X∗. Just as identification arguments based on instrumental variables in nonlinear models can

be used to correct for measurement error by shutting down all other channels of endogeneity

(Schennach (2013, 2016)), here we can use the instrument to test for the presence of measurement

error (distortions) by shutting down all other channels of endogeneity.

Below we show that endogeneity can be allowed for if, in addition to Y,X,Z, we also observe a

second measurement of X∗. Part (ii) implies that the measurement error in X must be classical.

Assumption IV3. (38)–(40) hold for some measurable functions g,mZ ,mX . For every e ∈ Sε,
g(·, e) is increasing over SX∗ and strictly increasing over some interval X ∗ ⊆ SX∗.

This assumption imposes monotonicity of g(·, e) which is often implied by economic theory

if g is a production, cost, or utility function, for example. See the discussion of Assumption 3.

Assumption IV4. Assumptions 7 and 8 hold with X ∗ from Assumption IV3.

This assumption directly imposes the single-crossing condition on pX∗|Z and that the prob-

ability of measurement error does not vary with Z conditional on X∗.

Lemma 5. Any P satisfying Assumptions IV1–IV4 is in MR.

Since distributions satisfying Assumptions IV1–IV4 are in MR, Theorem 2 implies that, for

such distributions, (7) is equivalent to (8). Therefore, a test of (8) rejects against and, in turn,

is able to recover the triangular model (38)–(40) with classical measurement error in X. The

instrument Z allows us to deal with measurement error in X (in the sense of being able to test

for it), but not with any other form of endogeneity in X.

Classical measurement error and no endogeneity in X∗ are both undesirable assumptions, but

both can be removed when we observe an additional, second measurement of X∗, say W . Con-

sider the triangular structure (38)–(40) augmented by an equation for the second measurement

W ,

W = mW (X∗, ηW ). (41)

In this case, the second measurement W can play the role of the variable Z in Section 2. Under

the assumptions of Theorem 2, the null hypothesis is then equivalent to Y ⊥ W | X. The test

of this hypothesis ignores the first-stage equation (39), not using the instrument Z, so that ηZ

and ε may be arbitrarily dependent, thereby allowing X∗ to be endogenous and measurement

error in X and W to be nonclassical.

C Simulations

In this section, we report the results of Monte Carlo simulations that explore the finite sample

performance of a test for the null of no measurement error, HnoME
0 . We consider the following
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outcome equation

Y = X∗2 +
1

2
X∗ +N(0, σ2

ε)

with different models for the measurement system:

Model I (two measurements with independent and homoskedastic ME):

X = X∗ +D ·N(0, σ2
ME)

Z = X∗ +N(0, 0.32)

with σε = 0.5.

Model II (two measurements with conditionally independent and heteroskedastic ME):

X = X∗ +D ·N(0, σ2
ME)e−|X

∗−0.5|

Z = X∗ +N(0, 0.32)

with σε = 0.5.

Model III (two measurements with dependent and heteroskedastic ME):

X = X∗ +D ·N(0, σ2
ME)e−|X

∗−0.5|

Z = X∗ +N(0, 0.32)e−|X
∗−0.5|

with σε = 0.5.

Model IV (nonlinear relationship between X∗ and Z):

X = X∗ +D ·N(0, σ2
ME)

Z = −(X∗ − 1)2 +N(0, 0.22)

with σε = 0.2.

In all four models, X∗ ∼ U [0, 1] and the random variable D is Bernoulli(1− λ), where 1− λ is

the probability of measurement error occurring in X. 1−λ = 0 means there is no measurement

error in X, which represents the null hypothesis. To generate alternatives, we increase 1− λ on

a grid up to one. We also vary the standard deviation of the measurement error in X, σME , in

{0.2, 0.5, 1}. Therefore, alternatives get closer to the null as we decrease 1−λ and/or σME . We

also vary the sample size n ∈ {200, 500}, but all models are simulated on 1, 000 Monte Carlo

samples.

We present results for four different tests. They all test the condition (9) for µ(y) = y, i.e.

whether the conditional mean of Y depends on Z or not. First, we run a linear regression of Y

on X and Z and then employ the standard t-test for the two-sided hypothesis that the coefficient

in front of Z is equal to zero. The other three tests are the Cramér-von Mises test proposed in

Delgado and Gonzalez Manteiga (2001) using three different bandwidths: h = 0.2n−1/3 (“DM”)
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n test Model I Model II Model III Model IV

200 t 0.043 0.051 0.043 0.418

DM- 0.084 0.084 0.081 0.078

DM 0.058 0.073 0.068 0.062

DM+ 0.049 0.069 0.060 0.100

500 t 0.067 0.052 0.035 0.798

DM- 0.076 0.066 0.069 0.074

DM 0.067 0.053 0.064 0.073

DM+ 0.078 0.056 0.060 0.076

Table 3: Null rejection probabilities

which is the rule-of-thumb bandwidth proposed in Delgado and Gonzalez Manteiga (2001), a

smaller bandwidth h = 0.1n−1/3 (“DM-”) and a larger bandwidth h = 0.5n−1/3 (“DM+”). The

DM tests use the Epanechnikov kernel and the critical values are computed using 100 bootstrap

replications. The nominal level is 5% for all tests.

Table 3 shows the null rejection probabilities of the tests and Figures 5–8 the corresponding

power curves. Overall the test by Delgado and Gonzalez Manteiga (2001) controls size well and

possesses power against all alternatives. The t-test is more powerful in some scenarios, which is

not surprising since it is based on a parametric estimator that converges at a faster rate than

the nonparametric estimator in the test by Delgado and Gonzalez Manteiga (2001). However,

this test does of course fail to control size when the linearity of the outcome equation is violated

(see Figure 8).
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Figure 5: (Model I): rejection probabilities for n = 200 (left column) and n = 500 (right column) as well as

σ2
ME = 1, 0.5, 0.2 (top to bottom).
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Figure 6: (Model II): rejection probabilities for n = 200 (left column) and n = 500 (right column) as well as

σ2
ME = 1, 0.5, 0.2 (top to bottom).
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Figure 7: (Model III): rejection probabilities for n = 200 (left column) and n = 500 (right column) as well as

σ2
ME = 1, 0.5, 0.2 (top to bottom).
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Figure 8: (Model IV): rejection probabilities for n = 200 (left column) and n = 500 (right column) as well as

σ2
ME = 1, 0.5, 0.2 (top to bottom).

47



before after

mean stand. dev. mean stand. dev.

survey earnings 1977 4,195.6 7,143.8 6,567.7 4,508.4

– fraction topcoded 0.1 0.4 0 0

administrative earnings 1977 4,703.6 5,867.8 6,422.6 4,539.6

– fraction topcoded 0.6 0.5 0 0

administrative earnings 1976 4,308.5 5,443.7 5,595.2 4,486.0

white 0.8 0.4 0.9 0.3

age 32.5 21.9 35.4 14.8

education 9.7 6.0 13.1 2.7

married 0.4 0.5 0.6 0.5

sample size 168,904 31,378

Table 4: Summary statistics before and after sample selection.

D More Details on the Empirical Application

If the survey measurement error ηS2 depends not only on the level of true earnings E∗2 , but also

on its growth, E∗2 −E∗1 , then (27) is violated. To see this suppose there is no measurement error

in administrative earnings, i.e. At = E∗t for all t, and that ηS2 depends on E∗2 −E∗1 conditional

on E∗2 . Then, ηS2 depends on A2 − A1 conditional on A2, which means S2 depends on A1

conditional on A2. However, this is not possible under the exclusion restriction (27).

Under the exclusion restriction (29), which allows for the dependence of the survey measure-

ment error on both the level and growth of earnings, we can test the modified null that there

is no measurement error in both periods, i.e. P (A1 = E∗1 and A2 = E∗2) = 1 by testing the

observable implication

S2 ⊥ A0 | (A2, A2 −A1). (42)

This restriction can be tested in a similar fashion as the other conditional independence condi-

tions described in the main text.

E Proofs

We now introduce the probability space and some notation that is used in the proofs. We

consider distributions P on the measurable space (Ω,B(Ω)), where Ω ⊆ Rd, d := 1 + 2dx + dz,

dx ≥ 1, dz ≥ 1, Ω = Ωy × Ωx × Ωx × Ωz, Ωy ⊆ R, Ωx ⊆ Rdx , Ωz ⊆ Rdz , and B(Ω) is the

Borel-sigma algebra of subsets of Ω. We then define the random vector (Y,X∗, X, Z) to contain

the coordinate mappings of ω ∈ Ω.
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For a collection G of subsets of Ω, we denote by σ(G) the sub-sigma algebra of B(Ω) generated

by G. For random variables A and B, we denote by σ(A) and σ(A,B) the sub-sigma algebras

of B(Ω) generated by A and A, B, respectively. For a collection of sets G and another set H,

we let G ∩H := {G ∩H : G ∈ G}. The abbreviation “a.s.” always refers to “P -a.s.”. When an

equality holds almost surely with respect to a different measure, we will make this explicit. For

a set B ∈ B(Ω), we use the abbreviation 1B to denote the indicator function for the set B, so

expressions like EP [1B], for example, make sense (this is equal to P (B)).

As in the main text let ρx and ρz each denote either Lebesgue on R or counting measure on

a discrete subset of R, but they do not need to be the same. For two elements (or vectors) A

and B, we denote by PA|B the regular conditional distribution23 of A given the sigma algebra

generated by B. We use the notation EP (A|B) for conditional expectations under P of A given

the sigma algebra generated by B. The event of no measurement error, D := {ω ∈ Ω: X(ω) =

X∗(ω)}, subsequently plays a prominent role. Let Dc denote the complement of D. For two

sets G,H ∈ B(Ω), we sometimes use the notation

PH(G) :=
P (G ∩H)

P (H)

if P (H) > 0. Since this defines just another distribution, conditional distributions of A|B under

PH , denoted by PHA|B, are well-defined.

E.1 Proofs for Sections 2 and 3

Proof of Theorem 1. Let P ∈ M and a, b be any real-valued bounded functions such that

the subsequent expectations exist. Then, under H0, we have P = PD so that

EP [a(Y )b(Z) | X] = EPD [a(Y )b(Z) | X]

= EPD [a(Y )b(Z) | X∗]

= EP [a(Y )b(Z) | X∗]

= EP [a(Y )|X∗] EP [b(Z)|X∗]

= EPD [a(Y )|X∗] EPD [b(Z)|X∗]

= EPD [a(Y )|X] EPD [b(Z)|X]

= EP [a(Y )|X] EP [b(Z)|X]

where all equalities hold P -a.s..24 The second and second-to-last equalities follow from Lemma 8.

The claim is therefore established. Q.E.D.

Before proving Theorem 2 we present the following lemma which is a modification of argu-

ments in Lehmann (1955).

23See chapter 10.2 of Dudley (2002) for a definition. Regular conditional distributions exist because all random

vectors are defined on the same Borel space from Appendix E (Theorem 10.2.2 in Dudley (2002)).
24The second and second-to-last equalities hold PD-a.s. according to Lemma 8, but since P (D) = 1, they also

hold P -a.s..
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Lemma 6. Let X be a random variable, P1,P2 two probability measures, and φ : R → R a

monotone function. Assume there exist a set X ⊆ R and a constant C > 0 such that the

following conditions hold: (i) φ is strictly monotone over X , and (ii) P1, P2 satisfy

P1(X ≥ x) ≤ P2(X ≥ x) ∀x ∈ R

and

P1(X ≥ x) ≤ P2(X ≥ x)− C ∀x ∈ X .

Then

EP1φ(X) 6= EP2φ(X),

provided the expectations exist.

Proof. Without loss of generality assume φ is increasing and φ ≥ 0. Approximate it by the

sequence of simple functions defined as φn(x) :=
∑N

i=1 bi1{x ∈ S
(n)
i }, where, for N := n2n + 1,

bi :=

{
i−1
2n , i = 1, . . . , N − 1

n, i = N

and

S
(n)
i :=

{ {
x ∈ R : i−1

2n ≤ φ(x) < i
2n

}
, i = 1, . . . , N − 1

{x ∈ R : φ(x) > n} , i = N
.

Similarly as in Lehmann (1955), we can then show that

EP2φn(X) =
N∑
i=1

aiP2

(
φ(X) ≥ i− 1

2n

)
where

ai :=

{
bi − bi−1, i = 2, . . . , N

0, i = 1

}
=

{
1

2n , i = 2, . . . , N

0, i = 1

}
.

Let In := {i ∈ {1, . . . , N} : (i − 1)/2n ∈ φ(X )} where φ(X ) is the image of X under φ. Notice

that the number of elements of In grows at the rate 2n as n→∞, so there is a positive constant

C̄ such that |In| ≥ C̄2n. Therefore:

EP2φn(X) =

N∑
i=1

aiP2

(
φ(X) ≥ i− 1

2n

)
=
∑
i∈In

aiP2

(
φ(X) ≥ i− 1

2n

)
+
∑
i 6∈In

aiP2

(
φ(X) ≥ i− 1

2n

)

≥
∑
i∈In

ai

[
P1

(
X ≥ φ−1

(
i− 1

2n

))
+ C

]
+
∑
i 6∈In

aiP1

(
φ(X) ≥ i− 1

2n

)

=

N∑
i=1

aiP1

(
φ(X) ≥ i− 1

2n

)
+ C
|In|
2n

≥ EP1φn(X) + CC̄.

50



where φ−1 denotes the inverse of φ on X . Since {φn}n≥1 is an increasing sequence, monotone

convergence then implies the desired result. Q.E.D.

Proof of Theorem 2. Sufficiency follows from Theorem 1 because MR ⊂ M. To show ne-

cessity assume that P ∈ MR satisfies (8), but not (7). (8) implies that EP [µ(Y )|X,Z] =

EP [µ(Y )|X] a.s.. On the other hand, by Lemma 6, for any (x, z1, x2) ∈ X × Z1 ×Z2, we have

EP [µ(Y )|X = x, Z = z2] = EP [φ(X∗)|X = x, Z = z2]

6= EP [φ(X∗)|X = x, Z = z1] = EP [µ(Y )|X = x, Z = z1], (43)

where φ(x∗) := EP [µ(Y )|X∗ = x∗]. The two equalities follow from Assumption 2. Since

P (X × Zk) > 0, k = 1, 2, we have found a contradiction, thus establishing necessity. Q.E.D.

Proof of Theorem 3. Consider P that satisfies the assumptions of the theorem with Assump-

tion 8 and λ := P (X = X∗) < 1. Notice that

P (X ∈ A|X∗ ∈ B,Z ∈ C) = P (X ∈ A|X∗ ∈ B,Z ∈ C,D)P (D|X∗ ∈ B,Z ∈ C)

+ P (X ∈ A|X∗ ∈ B,Z ∈ C,Dc)P (Dc|X∗ ∈ B,Z ∈ C)

= PD(X∗ ∈ A ∩B|Z ∈ C)P (D|X∗ ∈ B,Z ∈ C)

+Q(X ∈ A|X∗ ∈ B,Z ∈ C)(1− P (D|X∗ ∈ B,Z ∈ C))

for any sets A ∈ B(Ωx), C ∈ B(Ωz), for which the denominator is nonzero. By Assumption 7,

there is a function f : SX∗ → [0, 1] such that P (D|X∗ = x∗, Z = z) = f(x∗). Then by the usual

limiting argument choosing a suitable sequence of conditioning sets and Assumption 6,

pX|X∗,Z(x|x∗, z) = f(x∗)δ(x− x∗) + (1− f(x∗))qX|X∗(x|x∗)

where δ denotes a pointmass at zero. For any a > 0, define da,x(x∗) := 1{x∗ = x} if the

dominating measure ρx in Assumption 5 is counting measure and da,x(x∗) := aφ(a(x∗ − x))

if ρx is Lebesgue measure, where φ(·) denotes the standard normal pdf. Let Pa(x
∗|x, z) :=∫∞

x∗ pa(u|x, z)dρx(u) with

pa(x
∗|x, z) :=

pa(x|x∗)pX∗|Z(x∗|z)
pX|Z(x|z)

and

pa(x|x∗) := f(x∗)da,x(x∗) + (1− f(x∗))qX|X∗(x|x∗).

Then

lim
a→0

Pa(x
∗|x, z) = P (X∗ ≥ x∗|X = x, Z = z) (44)

holds trivially when ρx is counting measure, but also in the case of Lebesgue measure because

{da,x(·), a ≥ 0} is a delta sequence (e.g. Kanwal (1983)) and because pX∗|Z(x∗|z) is bounded

(implied by Assumption 5(i)).
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Fix any z = (z1, z2)′ ∈ Z1 × Z2, x ∈ X , and a > 0. Let c̄ := pX|Z(x|z2)/pX|Z(x|z1) and

∆pa(x
∗) := pa(x

∗|x, z2)− pa(x∗|x, z1). Now, suppose that, for some x∗1 ∈ SX∗ ,

∆pa(x
∗
1) =

pa(x|x∗1)

pX|Z(x|z2)

[
pX∗|Z(x∗1|z2)− c̄pX∗|Z(x∗1|z1)

]
=

pa(x|x∗1)

pX|Z(x|z2)
∆pc̄,z(x

∗
1) > 0.

Therefore, ∆pc̄,z(x
∗
1) > 0 which, by Assumption 8(i), implies ∆pc̄,z(x

∗
2) ≥ 0 and thus ∆pa(x

∗
2) ≥ 0

for any x∗2 > x∗1. This means ∆pa is also single-crossing. Define x0 := inf{x∗ : ∆pa(x
∗) > 0}.

Then, it is clear that Pa(x
∗|x, z2) ≥ Pa(x

∗|x, z1) for all x∗ ≥ x0. Suppose there exists a value

y < x0 such that Pa(y|x, z2) < Pa(y|x, z1). Then

0 > Pa(y|x, z2)− Pa(y|x, z1) =

∫ y

−∞
(pa(u|x, z1)− pa(u|x, z2))dρx(u)

which is a contradiction to pa(u|x, z1)−pa(u|x, z2) ≥ 0 for all u < x0. Therefore, we have shown

that

Pa(x
∗|x, z2) ≥ Pa(x∗|x, z1) ∀x∗ ∈ R. (45)

We now show that this inequality is strict for some x∗. To this end, notice that by parts (i) and

(ii) of Assumption 5,

pX|Z(x|z) = λpDX|Z(x|z) + (1− λ)qX|Z(x|z) = λpDX∗|Z(x|z) + (1− λ)qX|Z(x|z) ≤ Cq.

Also, by the bounds in Assumption 8, pa(x|x∗) ≥ (1 − f(x∗))qX|X∗(x|x∗) ≥ c2
q for all x∗ ∈ X ∗.

Thus, part (ii) of Assumption 8 implies ∆pa(x
∗) ≥ c3

q/Cq > 0 for all x∗ ∈ X ∗. If ρx is Lebesgue

measure, partition the set X ∗ into two sets X ∗1 and X ∗2 (i.e. X ∗1 ∩ X ∗2 = ∅ and X ∗1 ∪ X ∗2 = X ∗)
such that ρx(X ∗k ) > 0, k = 1, 2, and x∗1 < x∗2 for all x∗1 ∈ X ∗1 , x∗2 ∈ X ∗2 . If ρx is counting measure,

then simply let X ∗1 = X ∗2 = X ∗. Then, for all x∗ ∈ X ∗1 ,

Pa(x
∗|x, z2)− Pa(x∗|x, z1) =

∫ ∞
x∗

(pa(u|x, z2)− pa(u|x, z1))dρx(u)

≥
∫
X ∗2

(pa(u|x, z2)− pa(u|x, z1))dρx(u)

≥
c3
q

Cq
ρx(X ∗2 ) =: C̃ > 0 (46)

Since C̃,X ∗1 ,X ∗2 are independent of a, x, z1, z2, the convergence in (44) together with (45)–(46)

implies

P (X∗ ≥ x∗|X = x, Z = z2) ≥ P (X∗ ≥ x∗|X = x, Z = z1) ∀x∗ ∈ R

P (X∗ ≥ x∗|X = x, Z = z2) ≥ P (X∗ ≥ x∗|X = x, Z = z1) + C̃ ∀x∗ ∈ X ∗1 .

which are the conditions in Assumption 4. Finally, consider the case in which Assumption 8′

holds. Then, by Assumption 8′(i) and letting c̄′ := pZ|X(z2|x)/pZ|X(z1|x),

∆pa(x
∗
1) =

pa(x|x∗1)pX∗(x
∗
1)

pZ|X(z2|x)pX(x)
∆p′c̄,z(x

∗
1) > 0.
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again implies ∆pa(x
∗
2) for any x∗2 > x∗1, so the single-crossing property of ∆pa continues to hold

and (45) follows. The bound pZ|X(z|x)pX(x) = pX|Z(x|z)pZ(z) ≤ C2
q follows from Assumption 5

and pa(x|x∗)pX∗(x∗) ≥ (1 − f(x∗))qX|X∗(x|x∗)(1 − λ)qX∗(x
∗) ≥ (1 − λ)c2

q so that, by Assump-

tion 8′(ii), we have ∆pa(x
∗) ≥ (1 − λ)c3

qC
−2
q > 0 for all x∗ ∈ X ∗. The argument then procedes

similarly as above to show (46), thus concluding the proof. Q.E.D.

Proof of Lemma 1. First notice, that by Theorem 1 of Imbens and Newey (2009),

ε̄ ⊥ X | η̄. (47)

Second, let ḡ−1(x, ·), m̄−1
η (z, ·) and m̄−1

z (·, η̄) denote the inverse functions of ḡ(x, ·), m̄(z, ·), and

m̄(·, η̄), respectively. Then:

P (Y ≤ y | X = x, Z = z) = P (ε̄ ≤ ḡ−1(x, y) | X = x, Z = z)

= P (ε̄ ≤ ḡ−1(x, y) | X = x, m̄−1
z (X, η̄) = z)

= P (ε̄ ≤ ḡ−1(x, y) | X = x, m̄−1
z (x, η̄) = z)

= P (ε̄ ≤ ḡ−1(x, y) | X = x, x = m̄(z, η̄))

= P (ε̄ ≤ ḡ−1(x, y) | X = x, η̄ = m̄−1
η (z, x))

where all equalities follow from the strict monotonicity conditions in Assumption 9, guaranteeing

that all relevant conditioning sigma algebras are equal. Similarly,

P (Y ≤ y | X = x) = P (ε̄ ≤ ḡ−1(x, y) | X = x)

so that

Y ⊥ Z | X ⇔ ε̄ ⊥ η̄ | X.

Now, the “⇒” direction of the claim follows because ε̄ ⊥ η̄ and Z ⊥ (ε̄, η̄) imply ε̄ ⊥ (X, η̄)

which in turn implies ε̄ ⊥ η̄ | X. The “⇐” direction follows because ε̄ ⊥ η̄ | X and (47) imply

ε̄ ⊥ η̄. Q.E.D.

Proof of Theorem 4. Sufficiency follows immediately because, by the exclusion restriction,

the null implies

EP [ΛP (Y,X)|X,Z] = EP [EP (ΛP (Y,X)|X∗, X, Z) | X,Z]

= EP [EP (ΛP (Y,X)|X∗, X) | X,Z]

= 0

Necessity is proven similarly as in Theorem 2. Assume that P ∈ MR satisfies (8), but not

(7). For any x ∈ X , let φx(x∗) := EP [ΛP (Y,X)|X∗ = x∗, X = x], then by Lemma 6, for any

(x, z1, x2) ∈ X × Z1 ×Z2, we have

EP [ΛP (Y,X)|X = x, Z = z2] = EP [φx(X∗)|X = x, Z = z2]

6= EP [φx(X∗)|X = x, Z = z1] = EP [ΛP (Y,X)|X = x, Z = z1]. (48)

The two equalities follow from Assumption 2. Since P (X × Zk) > 0, k = 1, 2, we have found a

contradiction, thus establishing necessity. Q.E.D.
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E.2 Proofs for Appendix B

Proof of Lemma 3. By Theorem 3 it suffices to show that Assumptions 5–7 and 8′ are sat-

isfied. Part (ii) of Assumption 5 and Assumption 7 trivially hold because ηX has a continuous

distribution under P and because of (34), so that P (X = X∗) = 0. An inspection of the proof

of Theorem 3 reveals that the assumption of boundedness of the densities in Assumption 5 is

not needed when P (X = X∗) = 0, but only that pZ(z) is bounded over Z1 ∪ Z2. This is the

case for continuous distributions supported over intervals as long as we choose Zk to be bounded

subsets of the support of Z, bounded away from the boundaries of the support (which we will

further below). Assumption 6 holds because of Assumption RM4, so we only need to show that

the single-crossing condition, Assumption 8′, holds.

First, consider the case in which the support of ηZ is equal to R. Notice that the lower bounds

on the densities are satisfied for any choice of bounded intervals X ∗,X ,Z1,Z2 of positive length.

By the monotonicity condition in Assumption RM3, x∗ 7→ pZ|X∗(z̄2|x∗) = pηZ (z̄2 − x∗) and

x∗ 7→ pZ|X∗(z̄1|x∗) = pηZ (z̄1 − x∗) intersect only once as long as z̄1 and z̄2 are far enough apart.

In particular, let c0 ≥ c be such that pηZ (η) < minu∈(−c,c) pηZ (u) for all η ≥ c0. Then, they

intersect only once if z̄2 − z̄1 > 2c0.

By Assumptions RM3 and RM4, for any value x ∈ SX , the function z 7→ pZ,X(z, x) =∫
pηZ (z − x∗)pηX (x− x∗)pX∗(x∗)dx∗ is continuous, supported on whole R, and must have tails

that go to zero as |z| → ∞. As a consequence, for any x̄ ∈ SX , there exist values z̄1, z̄2 ∈ R,

z̄2 − z̄1 > 2c0, such that pZ,X(z̄2, x̄) = pZ,X(z̄1, x̄) and thus also pZ|X(z̄2|x̄) = pZ|X(z̄1|x̄). By

continuity of the densities, Assumption 8′ then holds with X = Nδ(x̄), Zk = Nδ(z̄k), k = 1, 2,

and X ∗ = Nδ(x̄
∗), where x̄∗ ∈ R is large enough and δ > 0 is chosen suitably small.

Now, consider the case in which the support of ηZ is bounded, say equal to (η
Z
, ηZ). For

some δ > 0 and some value x∗0 in the interior of the support of X∗, let z̄2 = x∗0 + ηZ + δ and

z̄1 = x∗0 + η
Z
− δ. Then pηZ (z̄1 − x∗) > 0 if x∗ < x∗0 − δ, zero otherwise, and pηZ (z̄2 − x∗) > 0 if

x∗ > x∗0 + δ, zero otherwise. Therefore,

pηZ (z̄2 − x∗)− pηZ (z̄1 − x∗)


< 0, x∗ < x∗0 − δ
= 0, x∗0 − δ ≤ x∗ ≤ x∗0 + δ

> 0, x∗ > x∗0 + δ

and thus also, for any C > 0,

pZ|X∗(z̄2|x∗)− CpZ|X∗(z̄1|x∗) = pηZ (z̄2 − x∗)− CpηZ (z̄1 − x∗)

{
< 0, x∗ < x∗0
≥ 0, x∗ ≥ x∗0

. (49)

Varying δ > 0 in the above argument shows that (49) holds also for z̄k replaced by any value zk

in a small enough neighborhood Zk = Nδz(z̄k), δz > 0. Similarly, we can find a neighborhood

X ∗ ⊂ SX∗ of values that are larger than x∗0 + δ, δ > 0, so that there is a constant cq > 0 with

pηZ (z2−x∗) ≥ cq for all z2 ∈ Z2 and x∗ ∈ X ∗. Therefore, both parts (i) and (ii) of Assumption 8′

hold. It remains to show that the lower bounds on the densities are satisfied. Let x̄ be in the

interior of the support of X such that pX|X∗(x̄|x∗) = pηX (x̄ − x∗) > 0 and pX∗(x
∗) > 0 for all
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x∗ ∈ X ∗. Then by continuity of the densities, we can also choose the neighborhoods X ,X ∗ small

enough so there is a constant cq > 0 with qX|X∗(x̄|x∗)qX∗(x∗) = pX|X∗(x̄|x∗)pX∗(x∗) ≥ cq for all

x∗ ∈ X ∗ and x ∈ X .

A straightforward modification of the argument yields the conclusion in the case that one of

η
Z
, ηZ is not finite. Q.E.D.

Proof of Lemma 4. By the same argument as in the proof of Lemma 3, pUZ
(z2−v)−cpUZ

(z1−
v) as a function of v is single-crossing and there is a constant cq > 0 such that pUZ

(z2 − v) −
cpUZ

(z1 − v) ≥ cq for all v in some neighborhood. These statements hold for all zk in some

neighborhood Zk and all c in C, where the definition of C relies on a suitably chosen X . All

subsequent statements are understood to hold for zk, v, x, and c in such sets and we omit those

qualifications. Now, notice that

pX,Z|X∗(x, z2|x∗)− cpX,Z|X∗(x, z1|x∗)

=

∫ [
pX,Z|X∗,α(x, z2|x∗, α)− cpX,Z|X∗,α(x, z1|x∗, α)

]
pα|X∗(α|x∗)dα

=

∫
pUX

(x− x∗ − α) [pUZ
(z2 − x∗ − α)− cpUZ

(z1 − x∗ − α)] pα|X∗(α|x∗)dα

=

∫
pUX

(x− v) [pUZ
(z2 − v)− cpUZ

(z1 − v)] pα|X∗(v − x∗|x∗)dv

By Assumption RM7 and single-crossing of v 7→ pUX
(x−v) [pUZ

(z2 − v)− cpUZ
(z1 − v)], Lemma A1

in Athey (2002) implies that x∗ 7→ pX,Z|X∗(x, z2|x∗) − cpX,Z|X∗(x, z1|x∗) is also single-crossing

and there is a constant c′q > 0 such that pX,Z|X∗(x, z2|x∗) − cpX,Z|X∗(x, z1|x∗) ≥ c′q for x∗ in

some neighborhood.

Similarly as in the proof of Lemma 3 we then show that

pX∗|X,Z(x∗|x, z2)− pX∗|X,Z(x∗|x, z1)

=
pX∗(x

∗)

pX,Z(x, z2)

[
pX,Z|X∗(x, z2|x∗)−

pX,Z(x, z2)

pX,Z(x, z1)
pX,Z|X∗(x, z2|x∗)

]
as a function of x∗ is also single-crossing. The proof then follows that of Theorem 3. Q.E.D.

Proof of Lemma 5. Set Z1 = {0}, Z2 = {1}. Assumption IV2(i) implies ε ⊥ (Z, ηX , X
∗), so

that ε ⊥ (Z, ηX) | X∗, which then implies Assumption 2. By Assumptions IV2(i) and IV3, x∗ 7→
EP [Y |X∗ = x∗] = EP [g(x∗, ε)] is increasing over SX∗ and strictly increasing over X ∗ (Lemma 9),

so that Assumption 3 holds. Assumption IV1 directly implies Assumption 5. Assumption IV4

requires Assumptions 8 and 7 to hold. Assumption IV2(ii) implies that ηX ⊥ (Z,X∗) and thus

ηX ⊥ Z | X∗, so that Assumption 6 holds. Theorem 3 then implies the desired claim. Q.E.D.

F Auxiliary Results

In this section, we provide auxiliary results that are used in the proofs of the main results. Some

of the proofs are fairly straightforward, but for the lack of a good reference and for completeness,

we provide statements and proofs here.
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Lemma 7. Let A be a collection of subsets of Ω and H ∈ B(Ω) some set. Then:

σ(A ∩H) = σ(A) ∩H.

Proof. First, consider the direction “⊆”. It is easy to see that σ(A)∩H is also a sigma algebra.25

Furthermore, it contains A ∩H and thus must also contain σ(A ∩H).

Now, consider the direction “⊇”. Let C := {C ⊆ Ω: C ∩ H ∈ σ(A) ∩ H}. Clearly, A ⊆ C
and C is a sigma algebra by a similar argument as in Footnote 25. Therefore, σ(A) must also

be contained in C, which means for all A ∈ σ(A), A ∩ H ∈ σ(A ∩ H) and thus σ(A) ∩ H ⊆
σ(A ∩H). Q.E.D.

Lemma 8. For any probability measure P on (Ω,B(Ω)) and any integrable f , we have

EPD [f |σ(X,X∗)] = EPD [f |σ(X)] = EPD [f |σ(X∗)] PD–a.s..

Proof. For the first equality, we want to show that EPD [f |σ(X)] is a version of the conditional

expectation EPD [f |σ(X∗, X)]. This means, we need to establish that EPD [f |σ(X)] satisfies the

following two conditions:

(i) EPD [f |σ(X)] is σ(X∗, X)-measurable

(ii) for all G ∈ σ(X∗, X): ∫
G
EPD [f |σ(X)]dPD =

∫
G
fdPD.

(i) trivially holds because by definition EPD [f |σ(X)] is σ(X)-measurable and thus also mea-

surable with respect to the larger sigma algebra σ(X∗, X). Now, we want to show (ii). Let

GX be the collection containing all sets of the form {ω ∈ Ω: Xj(ω) ≤ x} for x ∈ R and

j = 1, . . . , dx. Similarly, let GXX∗ be the collection containing the sets in GX and all those

of the form {ω ∈ Ω: X∗j (ω) ≤ x} for x ∈ R and j = 1, . . . , dx. Then σ(GX) = σ(X) and

σ(GXX∗) = σ(X∗, X) and GX ∩D = GXX∗ ∩D. Therefore,

σ(X∗, X) ∩D = σ(GXX∗) ∩D = σ(GXX∗ ∩D) = σ(GX ∩D) = σ(GX) ∩D = σ(X) ∩D

where the second and fourth equalities follow from Lemma 7. By definition EPD [f |σ(X)] satisfies∫
G
EPD [f |σ(X)]dPD =

∫
G
fdPD ∀G ∈ σ(X).

Therefore, we also have∫
G
EPD [f |σ(X)]dP =

∫
G
fdP ∀G ∈ σ(X) ∩D

⇒
∫
G
EPD [f |σ(X)]dP =

∫
G
fdP ∀G ∈ σ(X∗, X) ∩D

⇒
∫
G
EPD [f |σ(X)]dPD =

∫
G
fdPD ∀G ∈ σ(X∗, X)

25obviously, (i) H ∈ σ(A) ∩H and (ii) A ∈ σ(A) ∩H implies H \A ∈ σ(A) ∩H. (iii) A1, A2,∈ σ(A) ∩H also

implies ∪i≥1Ai ∈ σ(A) ∩H as follows: if ω ∈ ∪i≥1Ai, then there must be some j such that ω ∈ Aj ∈ σ(A) ∩H.
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This establishes (ii) and thus EPD [f |σ(X∗, X)] = EPD [f |σ(X)] PD–a.s. as desired. Given the

above argument, the proof for the second equality is obvious. Q.E.D.

Lemma 9. Let (A,A, µ) be a measure space with µ(A) > 0 and f a measurable, positive function.

Then
∫
A fdµ > 0.

Proof. First of all,
∫
A fdµ exists because f is positive. Suppose to the contrary that

∫
A fdµ = 0.

Let An := {a ∈ A : f(a) ≥ 1/n} so that A is equal to the union of all An, n ∈ N. Then

0 =

∫
A
fdµ ≥

∫
An

fdµ ≥ µ(An)/n.

By the continuity of measure, we then have

µ(A) = µ (∪n∈NAn) = lim
n→∞

µ(An) = 0,

which is a contradiction, so the claim follows. Q.E.D.
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