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Abstract

In Appendix S1, we justify our data collection rule in a decision-theoretic frame-

work. In Appendix S2, we describe an orthogonal greedy algorithm (OGA) and in

Appendix S3, we show that this algorithm possesses desirable theoretical properties.

Appendix S4 provides a detailed description of all components of the calibrated cost

functions for both empirical examples. In Appendix S5, we consider a simplified

setup in which all covariates are orthogonal to each other, and the budget con-

straint has a very simple form. Appendix S6 presents the results of Monte Carlo

simulations, and shows that all three methods considered in the main text select

more covariates and smaller sample sizes as we increase the predictive power of

some covariates. Appendix S7 shows the full list and definitions of selected covari-

ates for the baseline outcome in the school grants example. In Appendix S8, we

perform an out-of-sample evaluation by splitting the dataset into training samples

for the covariate selection step and evaluation samples for the computation of the

performance measures in both empirical examples. Appendix S9 provides details
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regarding how to deal with a vector of outcomes when we Appendix S10 gives a

detailed description of how we increase the correlation of the baseline score with the

follow-up score in the school grants example. select the common set of regressors

for all outcomes.

S2



S1 Decision Theory Applied to Data Collection

To describe our decision theoretic problem, we first introduce some notation. Let Θ :=

Θ1×Γ, where Θ1 ⊆ R, Γ ⊆ RM , be a parameter space and decompose a typical element θ

as θ = (β, γ′)′ where β ∈ Θ1 corresponds to possible average treatment effect parameters

and γ ∈ Γ to possible coefficients for the additional covariates. Let Spre := {Yi, Xi}Ni=1

and Sexp := {Yi, Di, Xi}ni=1 denote the pre-experimental and experimental random samples

that take values in the sample spaces RN(M+1) and Rn(M+2), respectively. Let A ⊆ R be

the action space and Sexp the space of possible Sexp. The goal is to make a decision, i.e.

choose an estimator, β̂ : Sexp → A, which maps the experimental sample into an action,

i.e. into an estimate of the average treatment effect β0. We evaluate the performance of

the decision rule β̂ by average risk Rn : Dn → R defined as

Rn(β̂) :=

∫
Θ

Ln(θ, β̂(Sexp))dµ(θ),

where µ : Θ → R is a weight function that integrates to one, Ln : Θ × A → R is a loss

function, and Dn a set of feasible decision rules. To make a decision we minimize average

risk:

min
β̂∈Dn

Rn(β̂). (S.1)

In the context of our data collection problem, we can implement our proposed data col-

lection procedure only after making some specific choices about the loss function, the set

of feasible decision rules and the weighting function µ. First, we pick average squared loss

(or mean-squared error):

Ln(θ, β̂(Sexp)) := Eexp,θ

[(
β − β̂(Sexp)

)2
]
,

where Eexp,θ denotes the expectation with respect to the distribution of the experimental

random sample Sexp, which might depend on the unknown state θ. This is a common loss

function for the evaluation of estimators and leads to a particularly simple formulation of

the resulting data collection problem that can easily be implemented in practice.

For any random sample S ∈ Sexp and any γ ∈ Γ, let b(γ,S) be the OLS estimator

from a regression of Y − γ′X on a constant and D. We choose the set of feasible decision

rules to contain all β̂ that can be written as the OLS estimator b(γ, ·) for some value of
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γ ∈ Γ and also satisfy the budget constraint:

Dn :=
{
b(γ, ·) : Sexp → A s.t. γ ∈ Γ and c(I(γ), n) ≤ B

}
.

This definition means that the decision rules in Dn can be indexed by γ ∈ Γ that satisfy

the budget constraint. Therefore, choosing a decision rule in Dn is equivalent to choosing

a feasible value of γ.

The weighting function µ is chosen as a product of two densities, µ := µβ × µγ, where

µβ is a density on Θ1 and µγ a density on Γ.

Since prior to the experiment we do not observe the experimental sample and the

distribution of the experimental data is unknown, in practice it is not possible to minimize

Rn(β̂) over β̂ ∈ Dn. However, we now show that, under a homoskedasticity assumption,

this minimization problem is equivalent to a minimization problem that only involves

the pre-experimental sample and thus can be solved prior to the experiment. To this

end define the variance V arpre,γ based on Epre,γ, the expectation with respect to the

distribution of Spre, which may depend on γ, but not on β. Similarly, let V arexp,θ be the

variance based on Eexp,θ. Define ∆(n) := (E[(D̄n(1−D̄n))−1])−1 with D̄n := n−1
∑n

i=1Di.

We will assume that the treatment assignment Di is completely randomized, so that in

particular the distribution of Di does not depend on θ and thus the expectation in the

definition of ∆(n) is independent of θ. Given a distribution for treatment assignment (e.g.

Bernoulli with success probability p = 1/2), the quantity ∆(n) is known.

Assumption 1.1. (i) Sexp is an i.i.d. sample and Di is completely randomized, i.e.

P (Di = 1|Xi) = p a.s. for some p ∈ (0, 1). (ii) V arexp,θ(Y − γ̂′X|D = 1) = V arexp,θ(Y −
γ̂′X|D = 0), where θ = (β, γ′)′, for all β ∈ Θ1 and γ, γ̂ ∈ Γ. (iii) Eexp,θ[XiX

′
i] =

Epre,γ[XiX
′
i], where θ = (β, γ′)′, for all β ∈ Θ1 and γ, γ̂ ∈ Γ.

Theorem 1.1. Under Assumption 1.1, the minimizer of (S.1) is equal to b(γ̂∗, ·), where

γ̂∗ is the minimizer of

min
γ̂∈Γ: c(I(γ̂),n)≤B

1

n∆(n)

∫
Γ

(γ − γ̂)′Epre,γ[XiX
′
i](γ − γ̂)dµγ(γ).

Proof. Consider:

min
β̂∈Dn

Rn(β̂) = min
β̂∈Dn

∫
Θ

Ln(θ, β̂(Sexp))dµ(θ)

S4



= min
β̂∈Dn

∫
Θ

Eexp,θ

[(
β − β̂(Sexp)

)2
]
dµ(θ)

= min
γ̂∈Γ: c(I(γ̂),n)≤B

∫
Θ

Eexp,θ
[
(β − b(γ̂,Sexp))2] dµ(θ)

The homoskedastic error assumption, Assumption 1.1(ii), implies that conditional on

D1, . . . , Dn, the estimator b(γ̂,Sexp) is unbiased and thus a straight-forward calculation

shows that its finite-sample MSE (conditional on D1, . . . , Dn) is

Eexp,θ
[
(β − b(γ̂,Sexp))2 | D1, . . . , Dn

]
= V arexp,θ (b(γ̂,Sexp) | D1, . . . , Dn)

=
V arexp,θ (Yi − γ̂′Xi | Di = 0)

nD̄n(1− D̄n)

=
V arexp,θ (Yi − γ̂′Xi)

nD̄n(1− D̄n)
.

Therefore, ∫
Θ

Eexp,θ
[
(β − b(γ̂,Sexp))2] dµ(θ)

=

∫
Θ

Eexp,θ
{
Eexp,θ

[
(β − b(γ̂,Sexp))2 | D1, . . . , Dn

]}
dµ(θ)

=

∫
Θ

Eexp,θ

{
V arexp,θ (Yi − γ̂′Xi)

nD̄n(1− D̄n)

}
dµ(θ)

=

∫
Θ

V arexp,θ (Yi − γ̂′Xi)

n∆(n)
dµ(θ)

The usual least-squares calculation then shows that minimizing the residual variance is

the same as minimizing the quadratic distance of γ̂ from γ:

argminγ̂∈Γ: c(I(γ̂),n)≤B

∫
Θ

V arexp,θ (Yi − γ̂′Xi)

n∆(n)
dµ(θ)

= argminγ̂∈Γ: c(I(γ̂),n)≤B

∫
Θ

Eexp,θ[((γ − γ̂)′Xi)
2]

n∆(n)
dµ(θ)

= argminγ̂∈Γ: c(I(γ̂),n)≤B

∫
Θ

(γ − γ̂)′Eexp,θ[XiX
′
i](γ − γ̂)

n∆(n)
dµ(θ)

= argminγ̂∈Γ: c(I(γ̂),n)≤B

∫
Γ

(γ − γ̂)′Epre,γ[XiX
′
i](γ − γ̂)

n∆(n)
dµγ(γ)
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which is the desired expression. Q.E.D.

This theorem implies that we can minimize risk of the treatment effect estimator

by finding the optimal combination of covariates in the pre-experimental sample subject

to the budget constraint. This optimization problem can be solved in practice for any

user-chosen weight function µγ.

It is reasonable to consider the case where Eexp,θ[YiX
′
i] = Epre,γ[YiX

′
i]. With this

assumption it is reasonable to choose a weight function µγ that puts all weight on the

available information from the pre-experimental sample. Hence, we make our procedure

operational by choosing such a weight function. This leads to the formulation given in

(3.8), if we restrict D̄n = 1/2.

S2 A Simple Greedy Algorithm

In practice, the vector X of potential covariates is typically high-dimensional, which

makes it challenging to solve the optimization problem (3.8). In this section, we propose

a computationally feasible algorithm that is both conceptually simple and performs well in

our simulations. In particular, it requires only running many univariate, linear regressions

and can therefore easily be implemented in popular statistical packages.

We split the joint optimization problem in (3.8) over n and γ into two nested problems.

The outer problem searches over the optimal sample size n, while the inner problem

determines the optimal selection of covariates for each sample size n:

min
n∈N

1

n∆(n)
min
γ∈RM

1

N

N∑
i=1

(Yi − γ′Xi)
2 s.t. c(I(γ), n) ≤ B. (S.2)

To convey our ideas in a simple form, suppose for the moment that the budget constraint

has the following linear form,

c(I(γ), n) = n · |I(γ)| ≤ B,

where |I(γ)| denotes the number of non-zero elements of γ. Note that the budget con-

straint puts the restriction on the number of selected covariates, that is, |I(γ)| ≤ B/n.

It is known to be NP-hard (non-deterministic polynomial time hard) to find a solution
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to the inner optimization problem in (S.2) subject to the constraint that γ has m non-zero

components, also called an m-term approximation, where m is the integer part of B/n in

our problem. In other words, solving (S.2) directly is not feasible unless the dimension

of covariates, M , is sufficiently small (Natarajan, 1995; Davis, Mallat, and Avellaneda,

1997).

There exists a class of computationally attractive procedures called greedy algorithms

that are able to approximate the infeasible solution. See Temlyakov (2011) for a detailed

discussion of greedy algorithms in the context of approximation theory. Tropp (2004),

Tropp and Gilbert (2007), Barron, Cohen, Dahmen, and DeVore (2008), Zhang (2009),

Huang, Zhang, and Metaxas (2011), Ing and Lai (2011), and Sancetta (2016), among many

others, demonstrate the usefulness of greedy algorithms for signal recovery in information

theory, and for the regression problem in statistical learning. We use a variant of OGA

that can allow for selection of groups of variables (see, for example, Huang, Zhang, and

Metaxas (2011)).

To formally define our proposed algorithm, we introduce some notation. For a vector v

of N observations v1, . . . , vN , let ‖v‖N := (1/N
∑N

i=1 v
2
i )

1/2 denote the empirical L2-norm

and let Y := (Y1, . . . , YN)′.

Suppose that the covariates X(j), j = 1, . . . ,M , are organized into p pre-determined

groups XG1 , . . . , XGp , where Gk ⊆ {1, . . . , p} indicates the covariates of group k. We de-

note the corresponding matrices of observations by bold letters (i.e., XGk
is the N × |Gk|

matrix of observations on XGk
, where |Gk| denotes the number of elements of the index

set Gk). By a slight abuse of notation, we let Xk := X{k} be the column vector of obser-

vations on Xk when k is a scalar. One important special case is that in which each group

consists of a single regressor. Furthermore, we allow for overlapping groups; in other

words, some elements can be included in multiple or even all groups. The group struc-

ture occurs naturally in experiments where data collection is carried out through surveys

whose questions can be grouped in those concerning income, those concerning education,

and so on. This can also occur naturally when we consider multivariate outcomes. See

Appendix S9 for details.

Suppose that the largest group size Jmax := maxk=1,...,p |Gk| is small, so that we can

implement orthogonal transformations within each group such that (X′Gj
XGj

)/N = I|Gj |,

where Id is the d-dimensional identity matrix. In what follows, assume that (X′Gj
XGj

)/N =

I|Gj | without loss of generality. Let | · |2 denote the `2 norm. The following procedure
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describes our algorithm for a general cost function c.

Step 1. Set the initial sample size n = n0.

Step 2. Group OGA for a given sample size n:

(a) initialize the inner loop at k = 0 and set the initial residual r̂n,0 = Y, the

initial covariate indices În,0 = ∅ and the initial group indices Ĝn,0 = ∅;

(b) separately regress r̂n,k on each group of regressors in {1, . . . , p}\Ĝn,k; call ĵn,k

the group of regressors with the largest `2 regression coefficients,

ĵn,k := arg max
j∈{1,...,p}\Ĝn,k

∣∣∣X′Gj
r̂n,k

∣∣∣
2

;

add ĵn,k to the set of selected groups, Ĝn,k+1 = Ĝn,k ∪ {ĵn,k};

(c) regress Y on the covariates XÎn,k+1
where În,k+1 := În,k ∪ Gĵn,k

; call the

regression coefficient γ̂n,k+1 := (X′În,k+1
XÎn,k+1

)−1X′În,k+1
Y and the residual

r̂n,k+1 := Y −XÎn,k+1
γ̂n,k+1;

(d) increase k by one and continue with (b) as long as c(În,k, n) ≤ B is satisfied;

(e) let kn be the number of selected groups; call the resulting submatrix of selected

regressors Z := XÎn,kn
and γ̂n := γ̂n,kn , respectively.

Step 3. Set n to the next sample size in N , and go to Step 2 until (and including)

n = nK .

Step 4. Set n̂ as the sample size that minimizes the residual variance:

n̂ := arg min
n∈N

1

nN

N∑
i=1

(Yi − Ziγ̂n)2 .

The algorithm above produces the selected sample size n̂, the selection of covariates

Î := În̂,kn̂ with kn̂ selected groups and m̂ := m(n̂) := |În̂,kn̂| selected regressors. Here,

γ̂ := γ̂n̂ is the corresponding coefficient vector on the selected regressors Z.

Remark 2.1. The minimal sample size n0 in N could, for example, be determined by

power calculations (see, e.g. Duflo, Glennerster, and Kremer, 2007; McConnell and Vera-

Hernandez, 2015) that guarantee a certain power level for an hypothesis test of β = 0.
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Remark 2.2. In Appendix S3, we provide theoretical properties of the OGA approxima-

tion. Theorem 3.2 in Appendix S3 gives a finite-sample bound on the difference between

the best possible MSE for the estimator of the average treatment effect and the MSE

for the OGA approximation. If we assume that the pre-experimental and experimental

samples are from the same population, the pre-experimental sample size N is large, and

the budget B is relatively small, then the difference between two MSEs decreases at a

rate of 1/k as k increases, where k is the number of the steps in the OGA. It is known

in a similar setting that this rate 1/k cannot generally be improved (see, e.g., Barron,

Cohen, Dahmen, and DeVore, 2008). In this sense, we show that our proposed method

has a desirable property. See Appendix S3 for further details.

Remark 2.3. There are many important reasons for collecting covariates, such as check-

ing whether randomization was carried out properly and identifying heterogeneous treat-

ment effects, among others. If a few covariates are essential for the analysis, we can

guarantee their selection by including them in every group Gk, k = 1, . . . , p.

Remark 2.4. In a simple model such as the one in Appendix S5, the optimal combination

of covariates equalizes the percent marginal contribution of an additional variable to the

residual variance with the percent marginal contribution of the additional variable to the

costs per interview. Step 2 of the OGA selects the next covariate as the one that has the

highest predictive power independent of its cost. Outside a class of very simple models as

in Appendix S5, it is difficult to determine an OGA approximation to the optimum that

jointly takes into account both predictive power as it requires comparison of all possible

covariate combinations. In our empirical application of Section V.B, we study a case with

heterogeneous costs and propose a sensitivity analysis that assesses whether the OGA

solution significantly changes with perturbations of the set of potential covariates.

S3 Theoretical Properties of the OGA

In this appendix, we provide theoretical properties of the OGA approximation f̂ := Zγ̂.

Following Barron, Cohen, Dahmen, and DeVore (2008), we define

‖f‖LN1 := inf
{ p∑
k=1

|βk|2 : βk ∈ R|Gk| and f =

p∑
k=1

X ′Gk
βk,
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where the elements of XGk
are normalized in the empirical norm ‖ · ‖N

}
.

When the expression f =
∑p

k=1 X
′
Gk
βk is not unique, we take the true f0 to be one with

the minimum value of ‖f‖LN1 . This gives f0 := γ′0X and f0 := Xγ0 for some γ0. Note that

f0 is defined by X with the true parameter value γ0, while f̂ is an OGA estimator of f0

using only Z.

Define

M̂SEn̂,N(f̂) := ‖Y − f̂‖2
N/n̂,

which is equal to the objective function in (3.8). Note that M̂SEn̂,N(f̂) can also be called

the “empirical risk”. In addition, define

MSEn̂,∞(f0) := Eexp

[
(Y − f0)2

]
/n̂.

Note that Eexp [(Y − f0)2] is the counterpart of ‖Y − f0‖2
N using the population in the

experiment. We assume that f0 minimizes f 7→ Eexp [(Y − f)2], where f = γ′X. This

implies that

Rn̂,∞(f̂ , f0) := MSEn̂,∞(f̂)−MSEn̂,∞(f0)

is always non-negative. For each OGA step k ≥ 1, let Gk denote the following class of

functions

Gk :=
{
XIk 7→ γ′IkXIk : γIk ∈ R|Ik|

}
.

Let R(g) := Eexp [(Y − g)2] for any function g. The following theorem gives a bound for

Rn̂,∞(f̂ , f0).

Theorem 3.2. Assume that (X′Gj
XGj

)/N = I|Gj | for each j = 1, . . . , p. Suppose N is

a finite subset of N+, c : {0, 1}M × N+ → R some function, and B > 0 some constant.

Further, assume that f0 minimizes f 7→ Eexp [(Y − f)2], where f = γ′X. Then the

following bound holds:

0 ≤ Rn̂,∞(f̂ , f0) ≤ T1 + T2,
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where

T1 :=
4‖f‖2

LN1
n̂

(
1

min{p, kn̂}

)
,

T2 :=
2

n̂
sup
g∈Gkn̂

∣∣{‖Y − g‖2
N −R(g)

}∣∣ .
The theorem provides a bound on Rn̂,∞(f̂ , f0) using the OGA approximation. On

one hand, the square root of MSEn̂,∞(f0) is the best possible standard error for the

estimator of the average treatment effect when the sample size is n̂. This corresponds to

the oracle case that f0 = γ′0X is known. On the other hand, the square root of MSEn̂,∞(f̂)

is the standard error for the estimator of the average treatment effect using the OGA

approximation. Theorem 3.2 shows that the difference between these two standard errors

is small for a given n̂ if both terms T1 and T2 are small. For a given n̂, T1 gets smaller as

kn̂ gets larger; however, T2 does not decrease if kn̂ gets larger. In fact, it may get larger

since the complexity of Gkn̂ increases as kn̂ gets larger.

To understand the former term T1 intuitively, suppose that ‖f‖LN1 <∞ (Remark 3.6

discusses this condition) and that p < kn̂ (that is, some groups of covariates are not

selected by the OGA algorithm). Consider, for example, the simple case in which, for a

given sample size n, data collection on every covariate incurs the same costs (i.e., c̃(n)) and

each group consists of a single covariate. Then the total data collection costs are equal

to the number of covariates selected multiplied by c̃(n) (i.e., c(S, n) = c̃(n)
∑M

j=1 Sj).

Assuming that c̃(n) is non-decreasing in n, we then have

1

kn̂
=

1

bB/c̃(n̂)c
,

where bxc denotes the largest integer smaller than x. This shows that for a given n̂, as

the budget B increases, a larger kn̂ will be chosen and the efficiency of the estimator of

the average treatment effect will improve.

We now consider the latter term T2, which is due to the difference between the pre-

experimental estimation sample and the population in the experiment. This term will be

small only if the following conditions are met: (i) the population for the pre-experimental

sample and the population for the experiment need to have the same expectations for

(Y − g)2, (ii) the sample size N in the pre-experimental sample has to be large enough,
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and (iii) the complexity of Gkn̂ is not too large. In the main text of this paper, we

have assumed that the pre-experimental and experimental samples are from the same

population, N is large, and the budget B is small. In this scenario, the latter term is

negligible compared to the former term.

Remark 3.5. Suppose that either (i) the pre-experimental sample size N is relatively

small, or (ii) the budget B is large enough such that the possibility of overfitting is present.

In this scenario, it might be desirable to solve a penalized version of (S.2) instead of solving

(S.2). For example, in the k-th OGA step, one may solve

min
n∈N

1

n
min
γ∈RM

[
1

N

N∑
i=1

(Yi − γ′Xi)
2 + κ

k logN

N

]
s.t. c(I(γ), n) ≤ B, (S.3)

where κ ≥ 0 is an extra tuning parameter that needs to be determined by the researcher.

Theoretical properties of this penalized OGA estimator can be obtained using the argu-

ments similar to those used in Barron, Cohen, Dahmen, and DeVore (2008) in conjunction

with the use of the truncation operator.

Remark 3.6. The condition ‖f‖LN1 < ∞ is trivially satisfied when p is finite. In the

case p → ∞, the condition ‖f‖LN1 < ∞ requires that not all groups of covariates are

equally important in the sense that the coefficients βk, when their `2 norms are sorted in

decreasing order, need to converge to zero fast enough to guarantee that
∑∞

k=1 |βk|2 <∞.

If suitable laws of large numbers apply, we can also replace the condition ‖f‖LN1 <∞ by

its population counterpart.

S3.1 Proofs

Proof of Theorem 3.2: Write

Rn̂,∞(f̂ , f0) = T1 + T2 + T3,

where

T1 := MSEn̂,∞(f̂)− M̂SEn̂,N(f̂),

T2 := M̂SEn̂,N(f̂)− M̂SEn̂,N(f0),
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T3 := M̂SEn̂,N(f0)−MSEn̂,∞(f0).

Note that for each k ≥ 1,

|T1 + T3| ≤
2

n̂
sup
g∈Gk

∣∣{‖Y − g‖2
N −R(g)

}∣∣ .
Then the desired result follows immediately from Lemma 3.1, which is given below.

Lemma 3.1. Assume that (X′Gj
XGj

)/N = I|Gj | for each j = 1, . . . , p. Suppose N is a

finite subset of N+, c : {0, 1}M ×N+ → R some function, and B > 0 some constant. Then

the following bound holds:

M̂SEn̂,N(f̂)− M̂SEn̂,N(f0) ≤
4‖f0‖2

LN1
n̂

(
1

min{p, kn̂}

)
. (S.4)

Proof. This lemma can be proved by arguments similar to those used in the proof of

Theorem 2.3 in Barron, Cohen, Dahmen, and DeVore (2008). The main difference between

our Lemma 3.1 and Theorem 2.3 of Barron, Cohen, Dahmen, and DeVore (2008) is that

we pay explicit attention to the group structure. In the subsequent arguments, we fix n

and leave indexing by n implicit.

First, letting r̂k−1,i denote the ith component of r̂k−1, we have

‖r̂k−1‖2
N = N−1

N∑
i=1

r̂k−1,iYi

= N−1

N∑
i=1

r̂k−1,iUi +N−1

N∑
i=1

r̂k−1,i

∞∑
j=1

X ′Gj ,i
βj

≤ ‖r̂k−1‖N
∥∥∥Y − ∞∑

k=1

X′Gk
βk

∥∥∥
N

+
[ ∞∑
j=1

|βj|2
]
N−1|r̂′k−1XGk

|2

≤ 1

2

(
‖r̂k−1‖2

N +
∥∥∥Y − ∞∑

k=1

X′Gk
βk

∥∥∥2

N

)
+
[ ∞∑
j=1

|βj|2
]
N−1|r̂′k−1XGk

|2,
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which implies that

‖r̂k−1‖2
N −

∥∥∥Y − ∞∑
k=1

X′Gk
βk

∥∥∥2

N
≤ 2
[ ∞∑
j=1

|βj|2
]
N−1|r̂′k−1XGk

|2. (S.5)

Note that if the left-hand side of (S.5) is negative for some k = k0, then the conclusion of

the theorem follows immediately for all m ≥ k0− 1. Hence, we assume that the left-hand

side of (S.5) is positive, implying that

(
‖r̂k−1‖2

N −
∥∥∥Y − ∞∑

k=1

X′Gk
βk

∥∥∥2

N

)2

≤ 4
[ ∞∑
j=1

|βj|2
]2

N−2|r̂′k−1XGk
|22. (S.6)

Let Pk denote the projection matrix Pk := XGk
(X′Gk

XGk
)−1X′Gk

= N−1XGk
X′Gk

,

where the second equality comes from the assumption that (X′Gk
XGk

)/N = I|Gk|. Hence,

it follows from the fact that Pk is the projection matrix that

‖r̂k−1 − Pkr̂k−1‖2
N = ‖r̂k−1‖2

N − ‖Pkr̂k−1‖2
N . (S.7)

Because r̂k is the best approximation to Y from În,k, we have

‖r̂k‖2
N ≤ ‖r̂k−1 − Pkr̂k−1‖2

N . (S.8)

Combining (S.8) with (S.7) and using the fact that P 2
k = Pk, we have

‖r̂k‖2
N ≤ ‖r̂k−1‖2

N − ‖Pkr̂k−1‖2
N

= ‖r̂k−1‖2
N − ‖N−1XGk

X′Gk
r̂k−1‖2

N

= ‖r̂k−1‖2
N −N−2|r̂′k−1XGk

|22, (S.9)

Now, combining (S.9) and (S.6) together yields

‖r̂k‖2
N ≤ ‖r̂k−1‖2

N −
1

4

(
‖r̂k−1‖2

N −
∥∥∥Y − ∞∑

k=1

X′Gk
βk

∥∥∥2

N

)2[ ∞∑
j=1

|βj|2
]−2

. (S.10)

As in the proof of Theorem 2.3 in Barron, Cohen, Dahmen, and DeVore (2008), let
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ak := ‖r̂k‖2
N − ‖Y −

∑∞
k=1 X

′
Gk
βk‖2

N . Then (S.10) can be rewritten as

ak ≤ ak−1

(
1− ak−1

4

[ ∞∑
j=1

|βj|2
]−2)

. (S.11)

Then the induction method used in the proof of Theorem 2.1 in Barron, Cohen, Dah-

men, and DeVore (2008) gives the desired result, provided that a1 ≤ 4[
∑∞

j=1 |βj|2]2. As

discussed at the end of the proof of Theorem 2.3 in Barron, Cohen, Dahmen, and De-

Vore (2008), the initial condition is satisfied if a0 ≤ 4[
∑∞

j=1 |βj|2]2. If not, we have that

a0 > 4[
∑∞

j=1 |βj|2]2, which implies that a1 < 0 by (S.11). Hence, in this case, we have

that ‖r̂1‖2
N ≤ ‖Y −

∑∞
k=1 X

′
Gk
βk‖2

N for which there is nothing else to prove.

Then, we have proved that the error of the group OGA satisfies

‖r̂m‖2
N ≤

∥∥∥Y − p∑
k=1

X′Gk
βk

∥∥∥2

N
+

4

m

[ p∑
j=1

|βj|2
]2

, m = 1, 2, . . . .

Equivalently, we have, for any n ∈ N and any k ≥ 1,

‖Y − f̂n,k‖2
N − ‖Y − f0‖2

N ≤
4‖f0‖2

LN1
k

.

Because N is a finite set, the desired result immediately follows by substituting in the

definition of f̂ and kn̂. Q.E.D.

S4 Cost Functions

In this appendix, we provide detailed descriptions of the cost functions used in Section V.

S4.1 Calibration of the Cost Function in Section V.A

Here, we give a detailed description of components of the cost function used in Section

V.A.

• Administration costs. The administration costs in the survey were R$10,000

and the average survey took two hours per household to conduct (i.e., T (S) = 120
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measured in minutes). Therefore,

cadmin(S, n) = φ(120)α = 10,000.

If we assume that, say, α = 0.4 (which means that the costs of 60 minutes are about

75.8 percent of the costs of 120 minutes), we obtain φ ≈ 1,473.

• Training costs. The training costs in the survey were R$25,000, that is,

ctrain(S, n) = κ(1, 466) · 120 = 25,000,

so that κ(1, 466) ≈ 208. It is reasonable to assume that there exists some lumpiness

in the training costs. For example, there could be some indivisibility in hotel rooms

that are rented, and in the number of trainers required for each training session. To

reflect this lumpiness, we assume that

κ(n) =



150 if 0 < n ≤ 1,400

208 if 1,400 < n ≤ 3,000

250 if 3,000 < n ≤ 4,500

300 if 4,500 < n ≤ 6,000

350 if 6,000 < n

.

Note that, in this specification, κ(1,466) ≈ 208, as calculated above. We take this

as a point of departure to calibrate κ(n). Increases in sample size n are likely to

translated into increases in the required number of field workers for the survey,

which in turn lead to higher training costs. Our experience in the field (based on

running surveys in different settings, and on looking at different budgets for different

versions of this same survey) suggests that, in our example, there is some concavity

in this cost function, because an increase in the sample size, in principle, will not

require a proportional increase in the number of interviewers, and an increase in

the number of interviewers will probably require a less than proportion increase

in training costs. For example, we assume that a large increase in the size of the

sample, from 1,500 to 6,000, leads to an increase in κ(n) from 208 to 300 (i.e., an

increase in overall training costs of about 50 percent).
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• Interview costs. Interview costs were R$630,000, accounting for the majority of

the total survey costs, that is,

cinterv(S, n) = 1,466 · η + 1,466 · p · 120 = 630,000,

so that η + 120p ≈ 429.74. The costs of traveling to each household in this survey

were approximately half of the total costs of each interview. If we choose η = 200,

then the fixed costs η amount to about 47 percent of the total interview costs, which

is consistent with the actual costs of the survey. Then we obtain the price per unit

of survey time as p ≈ 1.91. It is also reasonable to assume that half of the variable

costs per individual are due to the collection of the three outcomes in the survey,

because their administration was quite lengthy. The costs of collecting the outcomes

could also be seen as fixed costs (equal to 0.955 × 120 = 114.6), which means that

the price per unit of survey time for each of the remaining covariates is about 0.955.

In sum, we can rewrite interview costs as

cinterv(S, n) = 1,466× (200 + 114.6) + 1, 466× 0.955× 120 = 630,000.

• Price per covariate. We treat the sample obtained from the original experiment

as Spre, a pilot study or the first wave of a data collection process, based on which

we want to decide which covariates and what sample size to collect in the next wave.

We perform the selection procedure for each outcome variable separately, and thus

adjust T (S) = τ(1 +
∑M

j=1 Sj). For simplicity, we assume that to ask each question

on the questionnaire takes the same time, so that τ0 = τj = τ for every question;

therefore, T (S) = τ(1 +
∑M

j=1 Sj) = 120. Note that we set τ0 = τ here, but the high

costs of collecting the outcome variables are reflected in the specification of η above.

This results in τ = 120/(1 +
∑M

j=1 Sj). The actual number of covariates collected in

the experiment was 40; so
∑M

j=1 Sj = 40, and thus τ ≈ 3.

• Rescaled budget. Because we use only a subsample of the original experimental

sample, we also scale down the original budget of R$665,000 down to R$569,074,

which corresponds to the costs of selecting all 36 covariates in the subsample; that

is, c(1, 1,330) where 1 is a 36-dimensional vector of ones and c(S, n) is the calibrated

cost function.
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S4.2 Calibration of the Cost Function in Section V.B

Here, we present a detailed description of components of the cost function used in Section

V.B.

• Administration costs. The administration costs for the low- and high-cost co-

variates were estimated to be about $5,000 and $24,000, respectively. The high-cost

covariates were four tests that took about 15 minutes each (i.e., Thigh(S) = 60). For

the low-cost covariates (teacher and principal survey), the total survey time was

around 60 minutes, so Tlow(S) = 60. High- and low-cost variables were collected

by two different sets of enumerators, with different levels of training and skills.

Therefore,

φlow(60)αlow = 5,000 and φhigh(60)αhigh = 24,000.

If we assume that, say, αlow = αhigh = 0.7, we obtain φlow ≈ 285 and φhigh ≈ 1,366.

• Training costs. µhigh and µlow are the numbers of enumerators collecting high-

and low-cost variables, respectively. The training costs for enumerators in the high

and low groups increase by 20 for each set of additional 20 low-cost enumerators,

and by 12 for each set of 4 high-cost enumerators:

κlow(c, nc) := 20
19∑
k=1

k · 1{20(k − 1) < µlow(c, nc) ≤ 20k}

and

κhigh(c, nc) := 12
17∑
k=1

k · 1{4(k − 1) < µhigh(c, nc) ≤ 4k}.

This is reasonable because enumerators for low-cost variables can be trained in

large groups (i.e., groups of 20), while enumerators for high-cost variables need to be

trained in small groups (i.e., groups of 4). However, training a larger group demands

a larger room, and, in our experience, more time in the room. The lumpiness comes

from the costs of hotel rooms and the time of the trainers. The numbers 20 and

12 as the average costs of each cluster of enumerators were chosen based on our

experience with this survey (even if the design of the training and the organization
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of the survey was not exactly the same as the stylized version presented here),

and reflect both the time of the trainer and the costs of hotel rooms for each type

of enumerators. Because the low-cost variables are questionnaires administered

to principals and teachers, in principle the number of required enumerators only

depends on c (i.e., µlow(c, nc) = bλlowcc). High-cost variables are collected from

students, and therefore the number of required enumerators should depend on c

and nc, so µhigh(c, nc) = bλhighcµn,high(nc)c. We assume that the latter increases

again in steps, in this case of 10 individuals per cluster, that is,

µn,high(nc) :=
7∑

k=1

k · 1{10(k − 1) < nc ≤ 10k}.

We let λlow = 0.14 (capturing the idea that one interviewer could do about seven

schools) and λhigh = 0.019 (capturing the idea that one enumerator could perhaps

work with about 50 children). The training costs in the survey were $1,600 for the

low-cost group of covariates and $1,600 for the high-cost group of covariates.

• Interview costs. We estimate that interview costs in the survey were $150,000

and $10,000 for the high- and low-cost variables, respectively, i.e.

ψlow(350)ηlow + 350 · plow · 60 = 10,000

and

ψhigh(350, 24)ηhigh + 350 · 24phigh · 60 = 150,000.

We set ψlow(c) = µlow(c) and ψhigh(c, nc) = µhigh(c, nc), the number of required

enumerators for the two groups, so that ηlow and ηhigh can be interpreted as fixed

costs per enumerator. From the specification of µlow(c) and µhigh(c, nc) above, we

obtain µlow(350) = 50 and µhigh(350, 24) = 20. The fixed costs in the survey were

about ψlow(350)ηlow = 500 and ψhigh(350, 24)ηhigh = 1,000 for low- and high-cost

covariates. Therefore, ηlow = 500/50 = 10 and ηhigh = 1,000/20 = 50. Finally,

we can solve for the prices plow = (10,000 − 500)/(350 × 60) ≈ 0.45 and phigh =

(150,000− 1,000)/(350× 24× 60) ≈ 0.3.

• Price per covariate. For simplicity, we assume that to ask each low-cost ques-
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tion takes the same time, so that τj = τlow for every low-cost question (i.e., j =

1, . . . ,Mlow), and that each high-cost question takes the same time (i.e., τj = τhigh)

for all j = Mlow + 1, . . . ,M . The experimental budget contains funding for the

collection of one outcome variable, the high-cost test results at follow-up, and

three high-cost covariates at baseline. We modify Thigh(S) accordingly: Thigh(S) =

τhigh(1+
∑M

j=Mlow+1 Sj) = 4τhigh so that τhigh = 60/4 = 15. Similarly, originally there

were 255 low-cost covariates, which leads to τlow = 120/255 ≈ 0.47.

• Rescaled budget. As in the previous subsection, we use only a subsample of

the original experimental sample. Therefore, we scale down the original budget to

the amount that corresponds to the costs of collecting all covariates used in the

subsample. As a consequence, the rescaled budget is $25,338 in the case of baseline

outcomes and $33,281 in the case of the follow-up outcomes.

S5 A Simple Formulation of the Problem

S5.1 Uniform Cost per Covariate

Take the following simple example where: (1) all covariates are orthogonal to each other;

(2) all covariates have the same price, and the budget constraint is just B = nk, where n

is sample size and k is the number of covariates. Order the covariates by the contribution

to the MSE, so that the problem is to choose the first k covariates (and the corresponding

n).

Define σ2(k) = (1/N)
∑N

i=1(Yi − γ′0,kXi)
2, where γ0,k is the same as the vector of

true coefficients γ0 except that all coefficients after the (k + 1)th coefficient are set to be

zeros, and let MSE(k, n) = (1/n)σ2(k). For the convenience of using simple calculus,

suppose that k is continuous, ignoring that k is a positive integer, and that σ2(k) is twice

continuously differentiable. This would be a reasonable first-order approximation when

there are a large number of covariates, which is our set-up in the paper. Because we

ordered the covariates by the magnitude of their contribution to a reduction in the MSE,

we have ∂σ2(k)/∂k < 0, and ∂2σ2(k)/∂k2 > 0.

The problem we solve in this case is just

min
n,k

1

n
σ2(k) s.t. nk ≤ B.
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Assume we have an interior solution and that n is also continuous. Replace the budget

constraint in the objective function and we obtain

min
n,k

k

B
σ2(k).

This means that k is determined by

σ2(k) + k
∂σ2(k)

∂k
= 0,

or

σ2(k)

k
+
∂σ2(k)

∂k
= 0, (S.12)

which in this particular case does not depend on B. Then, n is given by the budget

constraint (i.e., n = B/k).

Another way to see where this condition comes from is just to start from the budget

constraint. If we want to always satisfy it then, starting from a particular choice of n and

k yields

n · dk + k · dn = 0,

or
dn

dk
= −n

k
.

Now, suppose we want to see what happens when k increases by a small amount. In

that case, keeping n fixed, the objective function falls by

1

n

∂σ2(k)

∂k
dk.

This is the marginal benefit of increasing k. However, n cannot stay fixed, and needs to

decrease by (n/k)dk to keep the budget constraint satisfied. This means that the objective

function will increase by (
− 1

n2

)
σ2 (k)

(
−n
k

)
dk.

This is the marginal cost of increasing k.

At the optimum, in an interior solution, marginal costs and marginal benefits need to
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balance out, so
1

nk
σ2 (k) dk = − 1

n

∂σ2 (k)

∂k
dk

or
σ2 (k)

k
+
∂σ2 (k)

∂k
= 0,

which reproduces (S.12).

There are a few things to notice in this simple example.

(1) The marginal costs of an increase in k are increasing in σ2 (k). This is because

increases in n are more important role for the MSE when σ2 (k) is large than when

it is small.

(2) The marginal costs of an increase in k are decreasing in k. This is because when k

is large, adding an additional covariate does not cost much in terms of reductions

in n.

(3) A large n affects the costs and benefits of increasing k in similar way. Having a

large n reduces benefits of additional covariates because it dilutes the decrease in

σ2 (k). Then, on one hand, it increases costs through the budget constraint, as a

larger reduction in n is needed to compensate for the same change in k. However,

on the other hand, it reduces costs, because when n is large, a particular reduction

in n makes much less difference for the MSE than in the case where n is small.

(4) We can rewrite this condition as

1

k
+
∂σ2(k)/∂k

σ2 (k)
= 0,

where the term (∂σ2(k)/∂k)/σ2 (k) is the percentage change in the unexplained

variance from an increase in k.

If we combine
dn

n
=
dk

k
,

which comes from the budget constraint, and

1

MSE (n, k)

∂MSE (n, k)

∂n
= − 1

n
,
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we notice that the percentage decrease in MSE from an increase in n is just (dn)/n, the

percentage change in n, which in turn is just equal to (dk)/k. So what the condition

above says is that we want to equate the percentage change in the unexplained variance

from a change in k to the percentage change in the MSE from the corresponding change

in n.

Perhaps even more interesting is to notice that k is the survey cost per individual in

this very simple example. Then this condition says that we want to choose k to equate the

percentage change in the survey costs per individual ((dk)/k) to the percentage change

in the residual variance
∂σ2(k)/∂k

σ2 (k)
dk.

This condition explicitly links the impacts of k on the survey costs and on the reduction

in the MSE.

Adding fixed costs F of visiting each individual is both useful and easy in this very

simple framework. Suppose there are a fixed costs F of going to each individual, so the

budget constraint is n (F + k) = B. Proceeding as above, we can rewrite our problem as

min
n,k

F + k

B
σ2 (k) .

This means that k is determined by

σ2 (k) + (F + k)
∂σ2 (k)

∂k
= 0,

or

1

F + k
+
∂σ2 (k)/∂k

σ2 (k)
= 0.

Note that, when there are large fixed costs of visiting each individual, increasing k is

not going to be that costly at the margin. It makes it much easier to pick a positive k.

However, other than that, the main lessons (1)–(4) of this simple model remain unchanged.
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S5.2 Variable Cost per Covariate

If covariates do not have uniform costs, then the problem is much more complicated.

Consider again a simple set-up where all the regressors are orthogonal, and we order

them by their contribution to the MSE. However, suppose that the magnitude of each

covariate’s contribution the MSE takes a discrete finite number of values. Let R denote

the set of these discrete values. Let r denote an element of R and R = |R| (the total

number of all elements in R). There are many potential covariates within each r group,

each with a different price p. The support of p could be different for each r. So, within

each r, we will then order variables by p. The problem will be to determine the optimal

k for each r group. Let k ≡ {kr : r ∈ R}.
The problem is

min
n,k

1

n
σ2 (k) s.t.

∑
r∈R

cr(kr) ≤ B,

where cr (kr) =
∑kr

l=1 pl are the costs of variables of type r used in the survey. We can

also write it as cr (kr) = pr (kr) kr, where pr (kr) = (
∑kr

l=1 pl)/kr. Because we order the

variables by price (from low to high), ∂pr (kr) /∂kr > 0. Let σ2
r = ∂σ2 (k)/∂kr, which is a

constant (this is what defines a group of variables).

Then, assume we can approximate pl (kr) by a continuous function and that we have

an interior solution. Then, substituting the budget constraint in the objective function:

min
n,k

1

B

[∑
r∈R

cr(kr)

]
σ2 (k) .

From the first-order condition for kr,

∂cr (kr)

∂kr
σ2 (k) +

[∑
r∈R

cr(kr)

]
∂σ2 (k)

∂kr
= 0,

or
∂cr (kr)/∂kr∑

r∈R cr(kr)
= −∂σ

2 (k)/∂kr
σ2 (k)

.

What this says is that, for each r, we choose variables up to the point where the percent

marginal contribution of the additional variable to the residual variance equals the percent

marginal contribution of the additional variable to the costs per interview, just as in the
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previous subsection.

S6 Simulations

In this appendix, we study the finite sample behavior of our proposed data collection

procedure, and compare its performance to other variable selection methods. We consider

the linear model from above, Y = γ′X + ε, and mimic the data-generating process in the

day-care application of Section V.A with the cognitive test outcome variable.

First, we use the dataset to regress Y on X. Call the regression coefficients γ̂emp and

the residual variance σ̂2
emp. Then, we regress Y on the treatment indicator to estimate the

treatment effect β̂emp = 0.18656. We use these three estimates to generate Monte Carlo

samples as follows. For the pre-experimental data Spre, we resample X from the empirical

distribution of the M = 36 covariates in the dataset and generate outcome variables by

Y = γ′X + ε, where ε ∼ N(0, σ̂2
emp) and

γ = γ̂emp +
1

2
sign(γ̂emp)κγ̄.

We vary the scaling parameter κ ∈ {0, 0.3, 0.7, 1} and γ̄ := (γ̄1, . . . , γ̄36)′ is specified in

three different fashions, as follows:

• “lin-sparse”, where the first five coefficients linearly decrease from 3 to 1, and all

others are zero, that is,

γ̄k :=

{
3− 2(k − 1)/5, 1 ≤ k ≤ 5

0, otherwise
;

• “lin-exp”, where the first five coefficients linearly decrease from 3 to 1, and the

remaining decay exponentially, that is,

γ̄k :=

{
3− 2(k − 1)/5, 1 ≤ k ≤ 5

e−k, k > 5
;

• “exp”, where exponential decay γ̄k := 10e−k.
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When κ = 0, the regression coefficients γ are equal to those in the empirical applica-

tion. When κ > 0, we add one of the three specifications of γ̄ to the coefficients found

in the dataset, thereby increasing (in absolute value) the first few coefficients1 more than

the others, and thus increasing the importance of the corresponding regressors for predic-

tion of the outcome. Figure 1 displays the regression coefficients in the dataset (i.e., when

κ = 0, denoted by the blue line labeled “data”), and γ for the three different specifications

when κ = 0.3.

1Because all estimated coefficients in the dataset (γ̂emp) are close to zero and roughly of the same
magnitude, we simply pick the first five covariates that have the highest correlation with the outcome
variable.
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Figure 1: Regression coefficients in the simulation when κ = 0.3
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Table 1: Simulation results: lin-sparse

Scale Method n̂ |Î| Cost/B

√
M̂SEn̂,N (f̂) bias(β̂) sd(β̂) RMSE(β̂) EQB

0 Experiment 1,330 36 1 0.02498 −0.0034284 0.049981 0.050048 $56,9074
OGA 2,508 1.4 0.99543 0.019249 0.00034598 0.038838 0.038801 $34,8586
LASSO 2,587 0.1 0.99278 0.019418 0.0020874 0.039372 0.039388 $35,6781
POST-LASSO 2,529 1.0 0.99457 0.019222 0.00069394 0.037758 0.037727 $35,1659

0.3 Experiment 1,330 36 1 0.02494 0.00036992 0.049501 0.049453 $56,9074
OGA 2,350 3.9 0.99443 0.019751 0.0013905 0.038275 0.038262 $37,7076
LASSO 2,228 5.9 0.988 0.020346 −0.00093089 0.041713 0.041682 $39,3017
POST-LASSO 2,320 4.4 0.99321 0.019696 −0.0020751 0.038746 0.038763 $37,1730

0.7 Experiment 1,330 36 1 0.024953 −0.00086563 0.050992 0.050948 $56,9074
OGA 2,346 4.0 0.99433 0.020552 −0.0020151 0.041475 0.041483 $39,7722
LASSO 2,218 6.1 0.98747 0.021145 0.00057516 0.043957 0.043917 $42,3971
POST-LASSO 2,246 5.7 0.98929 0.020177 0.0019693 0.042683 0.042686 $38,7095

1 Experiment 1,330 36 1 0.024938 −0.0021535 0.051146 0.05114 $56,9074
OGA 2,346 4.0 0.99433 0.021566 0.00044162 0.043389 0.043348 $43,8536
LASSO 2,172 6.9 0.98513 0.021383 −0.00058106 0.045378 0.045336 $43,1589
POST-LASSO 2,172 6.9 0.98513 0.019956 −0.0048726 0.040967 0.041215 $38,0053

Table 2: Simulation results: lin-exp

Scale Method n̂ |Î| Cost/B

√
M̂SEn̂,N (f̂) bias(β̂) sd(β̂) RMSE(β̂) EQB

0 Experiment 1,330 36 1 0.024965 0.0027033 0.051564 0.051583 $569,074
OGA 2,509 1.3 0.99541 0.019249 −0.00042961 0.03723 0.037195 $348,682
LASSO 2,588 0.1 0.99275 0.01941 −0.003374 0.03845 0.03856 $357,261
POST-LASSO 2,530 1.0 0.9946 0.019215 0.00076956 0.037924 0.037894 $351,755

0.3 Experiment 1,330 36 1 0.02492 −0.0015645 0.049457 0.049432 $569,074
OGA 2,343 4.0 0.99421 0.019868 −0.0014349 0.040197 0.040182 $379,540
LASSO 2,186 6.7 0.98569 0.020652 0.0019377 0.04084 0.040845 $403,004
POST-LASSO 2,313 4.5 0.99288 0.019816 −0.0025812 0.039587 0.039631 $377,876

0.7 Experiment 1,330 36 1 0.024936 0.0041527 0.050436 0.050556 $569,074
OGA 2,301 4.7 0.99247 0.020805 −0.0017267 0.041303 0.041297 $408,990
LASSO 2,134 7.7 0.98551 0.02162 −0.00071182 0.042716 0.042679 $440,232
POST-LASSO 2,206 6.5 0.98955 0.020522 0.0013055 0.043358 0.043334 $400,219

1 Experiment 1,330 36 1 0.024964 −0.0034064 0.049484 0.049551 $569,074
OGA 2,286 5.0 0.99187 0.021874 −0.0025106 0.042304 0.042336 $451,756
LASSO 2,080 9.0 0.98793 0.021987 −0.0015746 0.044218 0.044201 $454,765
POST-LASSO 2,078 9.0 0.98787 0.020374 0.00077488 0.041977 0.041942 $396,218
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Table 3: Simulation results: exp

Scale Method n̂ |Î| Cost/B

√
M̂SEn̂,N (f̂) bias(β̂) sd(β̂) RMSE(β̂) EQB

0 Experiment 1,330 36 1 0.024953 0.00083077 0.054043 0.053996 $569,074
OGA 2,511 1.3 0.99538 0.019234 0.0016616 0.037237 0.037236 $348,426
LASSO 2,588 0.1 0.99278 0.019394 −0.00049328 0.038849 0.038813 $356,941
POST-LASSO 2,529 1.0 0.99452 0.019203 −0.00044404 0.039549 0.039512 $351,403

0.3 Experiment 1,330 36 1 0.024947 −0.00089522 0.051246 0.051202 $569,074
OGA 2,411 2.9 0.99605 0.019426 0.0016951 0.038729 0.038727 $359,950
LASSO 2,291 4.9 0.9911 0.020184 −0.0022094 0.040243 0.040263 $389,560
POST-LASSO 2,380 3.5 0.99514 0.019377 0.0014552 0.039996 0.039982 $359,662

0.7 Experiment 1,330 36 1 0.024946 −0.0012694 0.050947 0.050912 $569,074
OGA 2,408 3.0 0.99605 0.019457 0.0015399 0.040789 0.040778 $362,287
LASSO 2,279 5.1 0.99039 0.020233 0.0011166 0.042491 0.042463 $391,128
POST-LASSO 2,376 3.5 0.99515 0.019405 −0.0023208 0.037252 0.037287 $361,903

1 Experiment 1,330 36 1 0.024948 −0.0034014 0.051898 0.051957 $569,074
OGA 2,407 3.0 0.99603 0.019494 0.0022031 0.038846 0.038869 $364,015
LASSO 2,271 5.2 0.99008 0.020298 0.0016393 0.039024 0.039019 $392,857
POST-LASSO 2,377 3.5 0.99516 0.019448 −0.00085645 0.039135 0.039106 $363,023

For each Monte Carlo sample from Spre, we apply the OGA, LASSO, and POST-

LASSO methods, as explained in Section V.A. The cost function and budget are specified

exactly as in the empirical application. We store the sample size and covariate selection

produced by each of the three procedures, and then mimic the randomized experiment

Sexp by first drawing a new sample of X from the same data-generating process as in Spre.

Then we generate random treatment indicators D, so that outcomes are determined by

Y = β̂empD + γ′X + ε,

where ε is randomly drawn from N(0, σ̂2
emp). We then compute the treatment effect

estimator β̂ of β by regressing Yi on (1, Di, Zi) using the generated experimental sample.2

The results are based on 500 Monte Carlo samples, N = 1,330, which is the sample

size in the dataset, and N a fine grid from 500 to 4,000. All covariates, those in the

dataset as well as the simulated ones, are studentized so that their variance is equal to

one.

For the different specifications of γ̄, Tables 1–3 report the selected sample size (n̂),

the selected number of covariates (|Î|), the ratio of costs for that selection divided by the

budget B, the square root of the estimated MSE,

√
M̂SEn̂,N(f̂), the bias and standard

2The method used here is not exactly the same as the method described in Step 4 of Section III.
However, the difference would be minimal in the Monte Carlo experiments.
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deviation of the estimated average treatment effect (bias(β̂) and sd(β̂)), and the RMSE

of β̂ across the Monte Carlo samples of the experiment.

Overall, all three methods perform similarly well across different designs and the

number of selected covariates tends to increase as κ becomes large. No single method

dominates other methods, although POST-LASSO seems to perform slightly better than

LASSO. In view of the Monte Carlo results, we argue that the empirical findings reported

in Section V.A are likely to result from the lack of highly predictive covariates in the

empirical example.
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S7 Variables Selected in the School Grants Example

Table 4: School grants (outcome: math test): selected covariates in panel (a) of Table 7

OGA LASSO POST-LASSO

Child is male Child is male Child is male
Village pop. Dist. to Dakar Dist. to Dakar
Piped water Dist. to city Dist. to city
Teach-stud Village pop. Village pop.
No. computers Piped water Piped water
Req. (h) teach. qual. No. computers No. computers
Req. (h) teach. att. Req. (h) teach-stud Req. (h) teach-stud
Obs. (h) manuals Hrs. tutoring Hrs. tutoring
Books acq. last yr. Books acq. last yr. Books acq. last yr.
Any parent transfer Provis. struct. Provis. struct.
Teacher bacc. plus NGO cash cont. NGO cash cont.
Teach. train. math Any parent transfer Any parent transfer
Obst. (t) class size NGO promised cash NGO promised cash
Measure. equip. Avg. teach. exp. Avg. teach. exp.

Teacher bacc. plus Teacher bacc. plus
Obs. (t) student will. Obs. (t) student will.
Obst. (t) class size Obst. (t) class size
Silence kids Silence kids
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Table 5: Definition of variables in Table 4

Variable Definition
Child is male Male student
Village pop. Size of the population in the village
Piped water School has access to piped water
Teach–stud Teacher–student ratio in the school
No. computers Number of computers in the school
Req. (h) teach. qual. Principal believes teacher quality is a major requirement

for school success
Req. (h) teach. att. Principal believes teacher attendance is a major requirement

for school success
Obs. (h) manuals Principal believes the lack of manuals is a major obstacle

to school success
Books acq. last yr. Number of manuals acquired last year
Any parent transfer Cash contributions from parents
Teacher bacc. plus Teacher has at least a baccalaureate degree
Teach. train. math Teacher received special training in math
Obst. (t) class size Teacher believes class size is a major obstacle to school success
Measure. equip. There is measurement equipment in the classroom
Dist. to Dakar Distance to Dakar
Dist. to city Distance to the nearest city
Req. (h) teach–stud Principal believe teacher–student ratio is a major requirement

for school success
Hrs. tutoring Hours of tutoring by teachers
Provis. struct. Number of provisional structures in school
NGO cash cont. Cash contributions by NGO
NGO promised cash Promised cash contributions by NGO
Avg. teach. exp. Average experience of teachers in the school
Obst. (t) student will. Teacher believes the lack of student willpower is one of the

main obstacles to learning in the school
Obst. (t) class size Teacher believes the lack of classroom size is one of the main

obstacles to learning in the school
Silence kids Teacher has to silence kids frequently
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S8 Out-of-Sample Evaluations

In the empirical applications, we performed the covariate selection procedure as well as

its evaluation (by RMSE and EQB) on the same pre-experimental sample. In this section,

we study the sensitivity of our findings when the covariate selection and evaluation steps

are performed on two separate samples.

We partition each of the datasets into five subsamples of equal size. Four of the

five subsamples are merged to form the training set on which we perform the covariate

selection procedure, and the remaining fifth subsample serves as evaluation sample on

which we calculate the performance measures RMSE and EQB. Given the partition into

five subsamples, there are five possible ways to combine them into training and evaluation

samples. We perform the covariate selection on each of these five training samples using

the same calibrated cost functions as in the main text, but adjusting the budget for the

drop in sample size by letting the budget be the cost function c(S, n) evaluated at the

experimental selection S = (1, . . . , 1)′ and n the length of the training sample. The output

of the procedure consists of five sample size selections n̂, five covariate selections, i.e. five

values of |Î|, and five cost-to-budget ratios. Tables 6–8 show the averages of n̂, |Î|, and

“Cost/B” over those five different training samples. The RMSE is calculated using the

estimate of γ from the training sample and data on Y and X from the evaluation sample.

Similarly, the EQB is the budget necessary to achieve the RMSE on the evaluation sample

equal to that of the experiment when the covariate selection procedures are applied to

the training sample. Both RMSE and EQB are then averaged over the five subsamples.

Overall, the results of this out-of-sample evaluation exercise are similar to those re-

ported in the full-sample analysis of the main text. Qualitatively, in both applications,

the covariate selection procedures recommend larger sample sizes than the experiment.

The recommended sample size may differ somewhat from those reported in the main text

because the budget and training sample size is different, but the orders of magnitude are

the same. In the school grants application, we notice that the recommended number of

covariates selected tends to be smaller than in the full-sample evaluation of the main text,

but if anything the covariate selection procedures manage to achieve even lower relative

equivalent budgets and lower RMSE than the experiment.
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Table 6: Day-care (outcome: cognitive test), 5-fold out-of-sample evaluation

method n̂ |Î| cost/B RMSE EQB relative EQB
experiment 1,330 36 1 0.029068 R$460,809.54 1

OGA 2,209 0.8 0.99503 0.020694 R$235,654.21 0.511
LASSO 2,260 0 0.99392 0.020777 R$237,425.38 0.515

POST-LASSO 2,146 1.8 0.99464 0.020647 R$234,494.95 0.509

Table 7: Day-care (outcome: health assessment), 5-fold out-of-sample evaluation

method n̂ |Î| cost/B RMSE EQB relative EQB
experiment 1,330 36 1 0.029313 R$460,809.54 1

OGA 2,221 0.6 0.99495 0.020708 R$232,066.95 0.504
LASSO 2,260 0 0.99392 0.020787 R$233,751.11 0.507

POST-LASSO 2,158 1.6 0.9949 0.020644 R$231,224.87 0.502
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Table 8: School grants (outcome: math test), 5-fold out-of-sample evaluation

Method n̂ |Î| Cost/B RMSE EQB Relative EQB

(a) Baseline outcome
experiment 1,824 142 1 0.0082721 $27,523.74 1

OGA 2,618.4 1.2 0.99823 0.0044229 $16,609.53 0.603
LASSO 2,658 0 0.9991 0.004445 $16,621.60 0.604
POST-LASSO 2,638.2 1.2 0.99927 0.0044291 $16,651.77 0.605

(b) Follow-up outcome
experiment 609 143 1 0.0098756 $48,856.20 1

OGA 6,132 0 0.99885 0.0028432 $14,664.85 0.300
LASSO 6,132 0 0.99885 0.0028432 $14,664.85 0.300
POST-LASSO 6,132 0 0.99885 0.0028432 $14,664.85 0.300

(c) Follow-up outcome, no high-cost covariates
experiment 609 143 1 0.0098756 $48,856.20 1

OGA 6,092.8 0.8 0.99893 0.0027807 $14,571.10 0.298
LASSO 6,000.8 5.4 0.99905 0.002795 $14,651.75 0.300
POST-LASSO 6,040.4 2.4 0.99887 0.0027623 $14,532.12 0.297

(d) Follow-up outcome, force baseline outcome
experiment 609 143 1 0.0098756 $48,856.20 1

OGA 2,035.2 2.4 0.90783 0.0041647 $24,918.89 0.510
LASSO 2,494 1 0.99623 0.0046439 $25,522.72 0.522
POST-LASSO 2,494 1 0.99623 0.0034893 $23,651.72 0.484
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S9 The Case of Multivariate Outcomes

In this section, we consider an extension to the case of multivariate outcomes. If data

on a particular regressor is collected, then the regressor is automatically available for

regressions involving any of the outcomes. Therefore, it is natural to select one common

set of regressors for all outcomes. Hence, our regression problem corresponds to the

special case of seemingly unrelated regressions (SUR) such that the vector of regressors

is identical for each equation. In this case, it is well known that the OLS and GLS

estimators are algebraically identical. In other words, there is no loss of efficiency in

using the single-equation OLS estimator even if regression errors are correlated.

Suppose there are L outcome variables of interest, say {Y`,i : ` = 1, . . . , L, and i =

1, . . . , N}. Then a multivariate analog of (3.8) can be written as

min
n∈N+,γ=(γ′1,...,γ

′
L)′∈RML

1

nNL

L∑
`=1

N∑
i=1

(Y`,i − γ′`Xi)
2 s.t. c(I(γ), n) ≤ B. (S.13)

In other words, the stacked version of the OLS problem is equivalent to regressing y :=

(y′1, . . . ,y
′
L)′ on IL⊗X conditional on the budget constraint, where y` = (Y`,1, . . . , Y`,L)′,

IL is the L-dimensional identity matrix, and X is N ×M dimensional matrix whose ith

row is X ′i. Therefore, the OGA applies to this case as well with minor modifications.

First, we need to redefine the outcome vector and the design matrix with the stacked y

and the enlarged design matrix IL ⊗ X. Suppose that a variable selection problem is

on individual components of Xi. Then note that because of the nature of the stacked

regressions, we need to apply a group OGA with each group consisting of L columns of

[IL ⊗X]k, where k = (`− 1)M +m (` = 1, . . . , L) for each m = 1, . . . ,M .

S10 Counterfactual Increases of the Predictive Power

of Covariates

In the second empirical application, we increase the correlation of the baseline outcome

with the follow-up outcome as follows:

• First, we run a regression of follow-up outcome Y2i on baseline outcome Y1i, yielding

regression coefficient ρ̂ and residual êi.
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• We then increase the predictive power of the baseline outcome by multiplying ρ̂ by

a factor w1 and the residual by w2 to define a new follow-up outcome

Ỹ2i = w1ρ̂Y1i + w2êi.

• Then the variance of the original follow-up outcome can be decomposed into an

“explained” and “unexplained” part as

V ar(Y2i) = ρ̂2V ar(Y1i) + V ar(êi),

and similarly for the new follow-up outcome

V ar(Ỹ2i) = w2
1ρ̂

2V ar(Y1i) + w2
2V ar(êi).

• We choose w2 so that the two outcomes have the same variance (V ar(Y2i) =

V ar(Ỹ2i)), i.e.

w2 =

√
(1− w2

1)ρ̂2V ar(Y1i)

V ar(êi)
+ 1.

• In panel (c) of Table 8, we set w1 = 1.2, and in panel (d) of Table 8, w1 = 1.3.
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