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Abstract

It is often desired to rank different populations according to the value of some feature of each population.

For example, it may be desired to rank neighborhoods according to some measure of intergenerational

mobility or countries according to some measure of academic achievement. These rankings are invariably

computed using estimates rather than the true values of these features. As a result, there may be

considerable uncertainty concerning the rank of each population. In this paper, we consider the problem

of accounting for such uncertainty by constructing confidence sets for the rank of each population. We

consider both the problem of constructing marginal confidence sets for the rank of a particular population

as well as simultaneous confidence sets for the ranks of all populations. We show how to construct such

confidence sets under weak assumptions. An important feature of all of our constructions is that they

remain computationally feasible even when the number of populations is very large. We apply our

theoretical results to re-examine the rankings of both neighborhoods in the United States in terms of

intergenerational mobility and developed countries in terms of academic achievement. The conclusions

about which countries do best and worst at reading, math, and science are fairly robust to accounting for

uncertainty. The confidence sets for the ranking of the 50 most populous commuting zones by measures

of mobility are also found to be small. These rankings, however, become much less informative if one

includes all commuting zones, if one considers neighborhoods at a more granular level (counties, Census

tracts), or if one uses movers across areas to address concerns about selection.
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1 Introduction

Rankings of different populations according to the value of some feature of each population are ubiquitous.

Interest in such rankings stem from their ability to convey succinct answers to various questions, such as

whether a particular population is “good” or “bad” in terms of the value of this feature relative to other

populations, or which populations are “best” or “worst” in terms of the value of this feature. These rankings

are invariably computed using estimates rather than the true values of these features. As a result, there may

be considerable uncertainty concerning the rank of each population. In this paper, we develop an inference

procedure to account for such uncertainty by constructing confidence sets for the rank of each population.

We apply the inference procedures to re-examine the rankings of both neighborhoods in the United States

in terms of intergenerational mobility and developed countries in terms of academic achievement.

Our inference procedure considers both marginal confidence sets for the rank of a particular population,

i.e., random sets that contain the rank of the particular population of interest with probability approximately

no less than some pre-specified level, as well as simultaneous confidence sets for the ranks of all populations,

i.e., random sets that contain the ranks of all populations with probability approximately no less than some

pre-specified level. The former confidence sets provide a way of accounting for uncertainty when answering

questions pertaining to the rank of a particular population, whereas the latter confidence sets provide a

way of accounting for uncertainty when answering questions pertaining to the ranks of all populations. We

show how to construct both types of confidence sets under weak assumptions. An important feature of all

of our constructions is that they remain computationally feasible even when the number of populations is

very large.

For each of the preceding confidence sets, we first show how they can be constructed using simultaneous

confidence sets for differences across the populations in the values of the features. The main requirement

underlying our analysis is only that these latter confidence sets for the differences are suitably valid. Our

procedure is therefore applicable not only to rankings of “populations” narrowly defined, but rather to

rankings of any objects (e.g. also treatments, treatment assignment rules, forecasting rules, etc.) as long as

suitably valid confidence sets for the differences of the objects’ performance measures can be constructed.

We show, however, that it is possible to improve upon this construction using a suitable multiple hypothesis

testing problem without imposing any further assumptions. In this sense, the assumptions involved in

establishing our formal results are weak. In short, our construction is based on simultaneous hypothesis

tests of the differences between population parameters, but a key requirement is that multiple hypothesis

tests of theses differences control not only the probability of making any false rejection (the usual familywise

error rate), but also in the case of any rejection, any false directional claim about the sign of any difference;

see Section 3 for more details.

As a specific example of the way in which the aforementioned confidence sets may be used by researchers,

we examine in more depth the question of identifying which populations are among the top (or the bottom).

For concreteness, we define a population to be among the top if its rank is less than or equal to a pre-

specified value τ . In order to account for uncertainty when answering this question, it may be desired to

construct what we subsequently refer to as a confidence set for the τ -best populations, i.e., a random set that

contains the identities of these populations with probability approximately no less than some pre-specified

level. While it is possible to use simultaneous confidence sets for the ranks of all populations to construct

such confidence sets, we show that it is possible to improve upon this construction without imposing any
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further assumptions.

In order to illustrate the widespread applicability of our inference procedure, we use it to re-examine the

rankings of both neighborhoods in the United States in terms of intergenerational mobility and developed

countries in terms of academic achievement. The former application uses data from Chetty et al. (2014,

2018), while the latter application uses test results from the Programme for International Student Assessment

(PISA). In each application, we apply our methodology to compute (i) the marginal confidence sets for the

rank of a given place, (ii) the simultaneous confidence sets for the ranks of all places, and (iii) the confidence

sets for the τ -best (or the τ -worst) places.

Before describing our empirical results, we emphasize that (i)–(iii) answer distinct economic questions.

Consider, for example, the application to intergenerational mobility and neighborhoods. Marginal confidence

sets answer the question of whether a given place has relatively high or low income mobility compared to

other places. Thus, (i) is relevant if one is interested in whether a particular place is among the worst or

the best places to grow up in terms of income mobility. Simultaneous confidence sets allow such inferences

to be drawn simultaneously across all places. Thus, (ii) is relevant if one is interested in broader geographic

patterns of income mobility across the United States. By comparison, confidence sets for the τ -best (or

τ -worst) answer the more specific question of which places cannot be ruled out as being among the areas

with the highest (lowest) income mobility. In other words, (iii) is relevant if one is interested in only the top

(or bottom) of a league table of neighborhoods by income mobility.

In our analysis of the PISA application, we find that the conclusions about which developed countries

do best and worst at reading, math, and science are fairly robust to accounting for uncertainty. Both the

marginal and simultaneous confidence sets are relatively narrow, especially for the countries at the top and

the bottom of the PISA league tables. Indeed, only a small set of countries cannot be ruled out as being

among the top or bottom three in terms of scholastic performance.

In the analyses of Chetty et al. (2014, 2018), the key outputs are local statistics on upward mobility

across commuting zones or counties.1 The stated goal of Chetty et al. (2018) was to draw the attention of

policymakers to low-mobility neighborhoods that need improvement and to help low-income families move

to high-mobility neighborhoods. We examine how informative these local statistics are about a given neigh-

borhood having relatively high or low income mobility compared to other neighborhoods. The confidence

sets for the ranking of the 50 most populous commuting zones by measures of mobility are found to be

small. These ranking, however, become much less informative if one includes all commuting zones, if one

considers neighborhoods at a more granular level (counties, Census tracts), or if one uses movers across areas

to address concerns about selection.

In order to illustrate the policy relevance of these findings, we revisit the recent Creating Moves to

Opportunity Experiment (CMTO) of Bergman et al. (2019). With the aim of helping families move to

neighborhoods with higher mobility rates, the authors conduct a randomized controlled trial with housing

voucher recipients in Seattle and King County. A treatment group of low-income families were offered

assistance and financial support to find and lease units in areas that were classified as high upward-mobility

neighborhoods within the county. The authors define high upward-mobility neighborhoods as Census tracts

with point estimates of upward mobility among the top one-third of the tracts in the county. Since no data

1A key contribution of Chetty et al. (2014, 2018) is the granular estimates of intergenerational mobility. For a description of
of intergenerational mobility across broader regions of the U.S., see for example Connor and Storper (2020) and the references
therein.
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on outcomes is yet available, the authors predict the impacts of the moves induced by the CMTO program

on children’s future outcomes using the point estimates of upward mobility of the individual tracts. We show

that the classification of a given tract as a high upward-mobility neighborhood may simply reflect statistical

uncertainty, not that mobility is particularly high in that neighborhood. We discuss the implication of this

finding for the assumptions needed to be statistically confident, prior to the experiment, that CMTO would

actually help families move to high opportunity neighborhoods.

Our paper is most closely related to a recent paper by Klein et al. (2020), who consider the problem of

constructing confidence sets analogous to ours. The main difference between their constructions and ours is

that they rely upon simultaneous confidence sets for the values of the features for all populations, whereas, as

mentioned previously, we exploit simultaneous confidence sets for differences in the values of the features for

certain pairs of populations. In Remark 3.8 and Appendix B, we show that their confidence sets are always

at least as large as ours when there are only two populations or in the homogeneous case with common

variances and sample sizes when there are more than two populations. More importantly, we show that

their method cannot in general produce smaller confidence sets with positive probability uniformly across

populations. While it is unknown if even one component may be smaller with positive probability, we find

in our simulations that their approach generally leads to confidence sets that are much larger than ours for

all populations.

Other related work includes Goldstein and Spiegelhalter (1996), who propose the use of resampling

methods such as the bootstrap to account for the type of uncertainty with which we are concerned. In

the context of the PISA study, for instance, such a bootstrap procedure has been used to report “range

of ranks” (see OECD (2019, Annex A3)). As explained by Hall and Miller (2009) and Xie et al. (2009),

however, such methods perform poorly when some populations have features whose values are “close” to

one another. In Remark 3.5 and Appendix A, we show that the bootstrap does not satisfy the coverage

requirement when there are more than two populations. Motivated by these observations, Xie et al. (2009)

propose an alternative method for accounting for uncertainty based on combining resampling with a smooth

estimator of the rank which requires, among other things, delicate choices of user-specified “bandwidths”.

Our constructions, by contrast, require no such tuning parameters.

Finally, we note that the problems studied in this paper are distinct from those of two recent papers

in econometrics, Andrews et al. (2018) and Gu and Koenker (2020). To explain the differences consider

the example of intergenerational mobility in the U.S. Andrews et al. (2018) develop methods for inference

on the true value of mobility in the (random) neighborhood whose estimate of mobility is the highest, i.e.,

whose estimated rank is one. In contrast, we develop methods for inference on the ranks of (one or more)

neighborhoods themselves; see Remarks 4.1 and 4.3 for more discussion. Gu and Koenker (2020) develop

optimal decision rules for selecting the best neighborhoods, which is related to a literature in subset selection

(see Gupta and Panchapakesan (1979) for a review), but complementary to our inference-based approach of

selecting the τ -best; see Remark 3.12 for more details.

The remainder of our paper is organized as follows. In Section 2, we illustrate the logic underlying our

inference procedures in a stylized example using a subset of the data from one of our empirical applications.

Section 3 then introduces our general setup and presents the formal results. In Section 3.5, we examine

the finite-sample behavior of our inference procedure via a simulation study, including a comparison with

the method proposed by Klein et al. (2020). Finally, in Section 4, we apply our inference procedures to

re-examine the rankings of both developed countries in terms of academic achievement and neighborhoods
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95% CS

Rank τ CZ θ̂j SE marg. simul. τ -best

1 1 Linton 0.608 0.014 [1, 1] [1, 1] 1
2 2 Gordon 0.443 0.010 [2, 4] [2, 4] 4
3 3 Trenton 0.433 0.010 [2, 4] [2, 4] 4
4 4 Jordan 0.413 0.050 [2, 5] [2, 5] 5
5 5 Albany 0.331 0.002 [4, 5] [4, 5] 5

Table 1: Commuting zones (CZs) ranked by the estimated intergenerational mobility measure θ̂j . “SE”

refers to the standard error of θ̂j . “95% CS (marg.)” refers to the 95% marginal confidence set for the rank,
“95% CS (simul.)” to the 95% simultaneous confidence set for all ranks, and “τ -best” refers to the size of
the 95% confidence set for the “τ -best” CZs.

in the United States in terms of intergenerational mobility.

2 Inference for Ranks in a Stylized Example

Suppose it is desired to rank five commuting zones (CZs) in the United States by a measure of upward

intergenerational mobility. Denote by rj the rank of CZ j based on the mobility measure θj . Panel A of

Figure 1 shows estimated mobility measures θ̂j with 95% marginal confidence intervals (estimates plus or

minus twice the standard error) for five CZs from our dataset in Section 4.2. Linton and Albany have the

highest and lowest mobility estimates among these five CZs and thus the smallest (r̂j = 1 for j = Linton) and

highest (r̂j = 5 for j = Albany) estimated ranks, respectively. Since θ̂j is an estimate of θj , the estimated

rank r̂j may not equal the true rank rj . In particular, Linton need not have the highest mobility and Albany

need not have the lowest mobility.

Table 1 summarizes the results of accounting for uncertainty in the ranks of these five CZs using (i)

marginal confidence sets for the rank of a single CZ, (ii) simultaneous confidence sets for the ranks of all

CZs (i.e., for the entire ranking), and (iii) confidence sets containing the τ -best CZs. We first report the

estimated ranks as well as the point estimates and their standard errors. As explained further below, these

data are all that is required to compute (i)–(iii). The sixth column reports the first set of results, marginal

confidence sets for the rank of each CZ. The second set of results is reported in the seventh column, which

displays simultaneous confidence sets for the ranks of all CZs. In general, the simultaneous confidence sets

are at least as large as the marginal ones, but in this example they are identical. The last set of results

is reported in the final column, showing the number of CZs contained in the confidence set for the τ -best,

where τ varies from one to five across the rows. For instance, with at least 95% confidence, there is only one

CZ that can be the best and there are four CZs that can be among the top two.

The remainder of this section describes how we arrive at the three set of results in Table 1 in the context

of this example.
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Linton

Gordon

Trenton

Jordan

Albany

0.3 0.4 0.5 0.6

A: Absolute mobility, θ̂j

Linton

Gordon

Jordan

Albany

−0.2 −0.1 0.0 0.1

B: Differences in mobility between Trenton and other CZs, ∆̂j,k

Figure 1: Panel A shows the estimated mobility with 95% (marginal) confidence sets (estimates plus or minus
twice the standard error) for five CZs. Panel B shows the estimated differences in mobility between Trenton
and all other CZs, together with 95% (simultaneous) confidence sets. Each marginal confidence set covers a
single mobility measure with probability 95% whereas the simultaneous confidence sets simultaneously cover
all differences in mobility measures with probability 95%.

Inference on the rank of a particular CZ

Suppose we are interested in the rank of Trenton. From Panel A of Figure 1, we see that its estimated rank

is three, but the mobility estimate is close to that of Gordon and Jordan’s mobility estimate has a large

standard error, so one might be uncertain whether Trenton’s rank is in fact larger or smaller than three. In

order to move beyond this conjecture, we use the following two-step procedure to construct a confidence set

for Trenton’s rank.

First, we consider the differences in mobility estimates between Trenton and all other CZs. It is clear

that only the signs of the differences in mobility estimates between Trenton and all other CZs being positive

or negative determine Trenton’s rank. These differences are displayed in Panel B of Figure 1 together

with 95% simultaneous confidence sets. Simultaneous coverage of this confidence set is important. In

order to explain the simultaneous coverage property, it is useful to introduce some further notation. To

this end, let ∆̂j,k be the estimator of the difference in mobility ∆j,k ≡ θj − θk for j = Trenton and k ∈
{Linton,Gordon, Jordan,Albany}. The confidence set in Panel B of Figure 1 is the product of four confidence

sets so the probability of it simultaneously covering all four differences ∆j,k for j = Trenton and k ∈
{Linton,Gordon, Jordan,Albany} is at least 95%. The bounds for the simultaneous confidence sets depend

on quantiles from the distribution of the maximum (over k) of the differences ∆̂j,k −∆j,k. In Section 3.1,

we explain how such quantiles may be approximated using the bootstrap, but other constructions are also

possible.

Second, given the simultaneous confidence set for the differences in mobility, we count how many of

the individual confidence sets lie entirely above and below zero. The first confidence set, which is for the

difference in mobility between Trenton and Linton, lies entirely below zero. Therefore, we can conclude that

Linton has significantly higher mobility than Trenton and thus must be ranked strictly better than Trenton.

The differences in mobility between Trenton and either Gordon and Jordan are not significantly different

from zero, so these three CZs cannot be ranked relative to each other. The confidence set for the difference

in mobility between Trenton and Albany lies entirely above zero, so that Albany must be ranked strictly
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Linton

Gordon

Trenton

Jordan

Albany

−0.2 0.0 0.2

A: Two−sided confidence set for all differences in mobility

Linton

Gordon

Trenton

Jordan

Albany

1 2 3 4 5

B: Two−sided confidence set for the ranking

Figure 2: Panel A shows all estimated differences in mobility, together with 95% (simultaneous) two-sided
confidence sets. Panel B shows estimated ranks together with 95% (simultaneous) two-sided confidence sets.

worse than Trenton. Using the notation of the subsequent sections, there is one CZ that must be ranked

strictly better, |N−j | = 1, and one CZ that must be ranked strictly worse, |N+
j | = 1. The confidence set for

the rank of Trenton among the p = 5 CZs is therefore

Rn,j = {|N−j |+ 1, . . . , p− |N+
j |} = {2, 3, 4} .

By virtue of the simultaneous coverage property for the differences described above, this set contains the

rank rj of Trenton with probability at least 95%.

While simple in nature, the preceding procedure illustrates the logic underlying all of our constructions.

In Section 3.2.2, we show that the confidence set Rn,j can be improved through the use of a suitable stepwise

multiple testing procedure. In the first step of the procedure, some CZs are determined to be ranked higher

or lower than the CZ of interest in exactly the manner described above; in subsequent steps, further CZs

are possibly determined to be ranked higher or lower than the CZ of interest by appropriately accounting

for those that were determined to be ranked higher or lower in previous steps. This process continues until

no further CZs can be determined to be ranked higher or lower than the CZ of interest.

Inference on the entire ranking

In order to construct a simultaneous confidence set for the entire ranking of all five CZs, rather than only for

Trenton, the approach is modified in the following fashion. We begin by computing every possible difference in

mobility estimates between all CZs, not only those involving Trenton. These differences are shown in Panel A

of Figure 2 together with simultaneous confidence sets. In this case, the confidence sets simultaneously cover

all differences ∆j,k, for all j, k ∈ {Linton,Gordon,Trenton, Jordan,Albany} with j 6= k. For each CZ j, we

then count how many confidence sets k lie above and below zero. For instance, for j = Trenton, we obtain

the same result as above, namely that one confidence set lies entirely below and one lies entirely above zero,

so |N−j | = 1 and |N+
j | = 1. For j = Linton, all confidence sets lie above zero, so |N−j | = 0 and |N+

j | = 4.

The confidence sets for each CZ are then constructed using these counts just as above.

The result of this procedure is shown in Panel B of Figure 2. The confidence set for Linton contains only
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Linton

Gordon

Trenton

Jordan

Albany

−0.4−0.20.00.20.4

A: One−sided confidence set for all differences in mobility

Linton

Gordon

Trenton

Jordan

Albany

1 2 3 4 5

B: One−sided confidence set for the ranking

Figure 3: Panel A shows all estimated differences in mobility, together with 95% (simultaneous) one-sided
confidence sets. Panel B shows estimated ranks together with 95% (simultaneous) one-sided confidence sets.

rank one, but the confidence sets for the other CZs contain two to four values. By virtue of the simultaneous

coverage property for the differences, the product of the five CZ-specific confidence sets for the ranks si-

multaneously covers the ranks of all CZs, i.e., rj for all j ∈ {Linton,Gordon,Trenton, Jordan,Albany}, with

probability at least 95%.

In Section 3.3.2, we show that this simple construction can also be improved through the use of a multiple

testing procedure that parallels the one that we use for the marginal confidence set.

Confidence sets containing the τ-best CZs

Suppose it is desired to determine which of the five CZs could be among the τ = 2 best CZs. From Panel A

of Figure 1, we see that Linton and Gordon have ranks one and two, but the mobility estimate of Trenton

is close to that of Gordon and Jordan’s mobility estimate has large standard errors, so one might consider

that Trenton or Jordan could also be among the top two CZs. The following procedure provides a means of

accounting for this uncertainty formally.

Denote the set of CZs which are among the two best as J2−best
0 ≡ {j : rj ≤ 2}. This set contains at least

two CZs and strictly more than two when CZs are tied at rank one or two. We want to construct a set

J2−best
n that contains the set J2−best

0 with probability at least 95%.

A simple approach is based on one-sided simultaneous confidence sets for all ranks. Figure 3 repeats the

computations for Figure 2 except the simultaneous confidence sets for the differences are one-sided (upper

bounds) and the resulting simultaneous confidence sets for the ranks are therefore also one-sided (lower

bounds). Let Rjoint
n,j be the jth dimension of the one-sided confidence set for the ranking, i.e., the confidence

set for rj in Panel B of Figure 3. In order to construct a set with the desired coverage property, it suffices

to collect all CZs j for which Rjoint
n,j contains the value two, i.e.,

J2−best
n = {j : 2 ∈ Rjoint

n,j } = {Linton, Gordon, Trenton, Jordan} .

By virtue of the coverage property of the simultaneous confidence set for the ranking, this set covers the set of

the two best CZs, J2−best
0 , with probability at least 95%. While this “projection” approach for constructing
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the confidence set is parsimonious and intuitive, improvements may be possible by realizing that a CZ can be

among the top two if and only if at most one other CZ (without regard to its identity) has higher mobility.

By comparison, the one-sided simultaneous confidence sets for all ranks Rjoint
n encodes some information

about which CZs have higher mobility than another. In Section 3.4, we propose a more “direct” procedure

based on exploiting the insight and show through simulations that it leads to smaller confidence sets.

Key features of the inference approach

Section 3 formally shows that, under weak assumptions, the above three constructions of confidence sets

asymptotically control the probability of covering the objects of interest at the desired level (95% in the

example of this section) uniformly over a large class of possible distributions for the observed data. The

following two aspects of the theoretical results are especially important in our empirical applications and

can already be understood in the context of the example in Panel A of Figure 1.

First, in our applications, we see that many estimates θ̂j are close to one other, such as the mobility

estimates of Gordon and Trenton in the preceding example. It is therefore important to develop inference

methods that do not break down when some (or even all) measures θj are (close to) equal to one another.

Formally, our confidence sets achieve this goal because we show that they guarantee coverage uniformly over

a large family of distributions for the observed data, and hence uniformly over all configurations of measures

θ1, . . . , θp, irrespective of whether some (or even all) of them are (close to) equal to each other.

Second, our confidence sets satisfy the uniform coverage requirement under weak conditions. In particular,

the distributions of θ̂j − θj are allowed to vary across j. Such heterogeneity is salient in our empirical

applications and its importance can already be seen in Panel A of Figure 1: Trenton’s mobility estimate has

much smaller standard error than that of Jordan, but much larger than that of Albany.

3 General Setup and Main Results

3.1 Setup and Notation

Let j ∈ J ≡ {1, . . . , p} index populations of interest. Denote by Pj distributions characterizing the different

populations and by θ(Pj) the associated features by which it is desired to rank them. In the example of

Section 2, j denotes a county, θ(Pj) is a measure of intergenerational mobility in county j, and Pj is the

distribution from which we observe data for estimation of the feature θ(Pj). The rank of population j is

defined as

rj(P ) ≡ 1 +
∑
k∈J

1{θ(Pk) > θ(Pj)},

where P is a distribution with marginals Pj for j ∈ J , and 1{A} is equal to one if the event A holds and

equal to zero otherwise. Let θ(P ) ≡ (θ(P1), . . . , θ(Pp))
′ and r(P ) ≡ (r1(P ), . . . , rp(P ))′. Before proceeding,

a simple example illustrates the way in which ties are handled with this definition of ranks: if θ(P ) =

(4, 1, 1, 3, 3, 3, 6)′, then r(P ) = (2, 6, 6, 3, 3, 3, 1)′.

The primary goal is to construct confidence sets for the rank of a particular population or for the ranks of

all populations simultaneously. More precisely, for a given value of α ∈ (0, 1), we use a sample of observations
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from P to construct (random) sets Rn,j such that

lim inf
n→∞

inf
P∈P

P {rj(P ) ∈ Rn,j} ≥ 1− α (1)

for a pre-specified population j ∈ J , where P denotes a “large” nonparametric family of distributions. Here,

n denotes a measure of the size of the sample, typically the minimum sample size across populations. We

also construct (random) sets Rjoint
n ≡

∏
j∈J R

joint
n,j such that

lim inf
n→∞

inf
P∈P

P
{
r(P ) ∈ Rjoint

n

}
≥ 1− α . (2)

In all of our constructions, Rn,j and Rjoint
n,j are subsets of J , allowing for the possibility that the lower endpoint

is 1 or the upper endpoint is p to permit both one-sided and two-sided inference. Below, sets satisfying (1)

are referred to as marginal confidence sets for the rank of a single population and sets satisfying (2) as

simultaneous confidence sets for the ranks of all populations.

In addition, we consider the goal of constructing confidence sets for the identities of all populations whose

rank is less than or equal to a pre-specified value τ ∈ J , i.e, for a given value of α ∈ (0, 1), we construct

(random) sets Jτ−bestn that are subsets of J and satisfy

lim inf
n→∞

inf
P∈P

P
{
Jτ−best0 (P ) ⊆ Jτ−bestn

}
≥ 1− α , (3)

where

Jτ−best0 (P ) ≡ {j ∈ J : rj(P ) ≤ τ} .

Sets satisfying (3) are referred to as confidence sets for the τ -best populations.

Much of the analysis relies upon confidence sets Cn(1− α, S) for sets of pairwise differences,

∆S(P ) ≡ (∆j,k(P ) : (j, k) ∈ S) ,

where ∆j,k(P ) ≡ θ(Pj)− θ(Pk) and S ⊆ {(j, k) ∈ J × J : j 6= k}. We require these to be rectangular in the

sense that

Cn(1− α, S) =
∏

(j,k)∈S

Cn(1− α, S, (j, k)) (4)

for suitable sets {Cn(1− α, S, (j, k)) : (j, k) ∈ S}. Furthermore, we assume that they satisfy

lim inf
n→∞

inf
P∈P

P{∆S(P ) ∈ Cn(1− α, S)} ≥ 1− α . (5)

We now describe some examples of confidence sets that satisfy these two conditions. Let θ̂1, . . . , θ̂p be

estimators of the features θ(P1), . . . , θ(Pp) and ŝe2j,k an estimator of the variance of θ̂j− θ̂k. For S ⊆ {(j, k) ∈
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J × J : j 6= k}, define the following cumulative distribution functions:

Llower,n(x, S, P ) ≡ P

{
max

(j,k)∈S

θ̂j − θ̂k −∆j,k(P )

ŝej,k
≤ x

}
, (6)

Lupper,n(x, S, P ) ≡ P

{
max

(j,k)∈S

∆j,k(P )− (θ̂j − θ̂k)

ŝej,k
≤ x

}
, (7)

Lsymm,n(x, S, P ) ≡ P

{
max

(j,k)∈S

|θ̂j − θ̂k −∆j,k(P )|
ŝej,k

≤ x

}
. (8)

Further consider estimators of (6) – (8) using an estimate P̂n of P to define the following confidence sets:

Clower,n(1− α, S) ≡
∏

(j,k)∈S

[
θ̂j − θ̂k − ŝej,kL−1lower,n(1− α, S, P̂n),∞

)
, (9)

Cupper,n(1− α, S) ≡
∏

(j,k)∈S

(
−∞, θ̂j − θ̂k + ŝej,kL

−1
upper,n(1− α, S, P̂n)

]
, (10)

Csymm,n(1− α, S) ≡
∏

(j,k)∈S

[
θ̂j − θ̂k ± ŝej,kL−1symm,n(1− α, S, P̂n)

]
, (11)

Cequi,n(1− α, S) ≡ Clower,n

(
1− α

2
, S
)⋂

Cupper,n

(
1− α

2
, S
)
. (12)

Here, it is understood that, for a cumulative distribution function F (x) on the real line, the quantity

F−1(1 − α) is defined to be inf{x ∈ R : F (x) ≥ 1 − α}; it is also understood that, for real numbers a

and b, [a ± b] is defined to be [a − b, a + b]. If the estimators θ̂1, . . . , θ̂p are jointly asymptotically normally

distributed, then the quantiles L−1t,n(1 − α, S, P̂n), t ∈ {lower,upper, symm}, can be computed from the

limiting distributions of the max-statistics in (6)–(8), e.g., through simulation. Alternatively, resampling

methods such as the bootstrap may be employed. We emphasize that we make no requirement that the

estimators θ̂1, . . . , θ̂p are independent; all that we require is that confidence sets Cn(1− α, S) satisfying (5)

are available.

The four confidence sets in (9)–(12) can be viewed as nonparametric generalizations of Tukey (1953)’s

method for all pairwise comparisons and Dunnett (1955)’s method for comparisons with a control. The clas-

sical methods rely on the assumptions of normal populations and equal variances, under which critical values

can be computed using Tukey’s studentized range distribution or Dunnet’s two-sided range distribution. We

do not impose either of these assumptions, but rather only require an estimate P̂n of P so that the resulting

confidence set satisfies (5). The argument establishing this condition determines how P and P̂n should be

defined. For example, suppose we observe an i.i.d. sample X1, . . . , Xn, where Xi ≡ (Xi,1, . . . , Xi,p)
′ has

distribution P . When P is the set of distributions on Rp satisfying a uniform integrability condition, then

the bootstrap leads to confidence sets satisfying (5) when θ(P ) is the population mean vector and θ̂n is

the sample mean vector. For other parameters and estimators, see Romano and Shaikh (2012). This result

may also be adapted to the case in which, for each population j ∈ J , we observe nj realizations from a

distribution Pj and the populations are independent of each other, i.e., Xi,j is independent of Xk,l for all

i, j, k, l such that j 6= l.

Remark 3.1. Romano and Shaikh (2012) provide a general theory for establishing (5) in the case when
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the number of observations in each population diverges and the number of populations p is fixed. However,

the results can be extended to the high-dimensional case in which p diverges, using, for instance, high-

dimensional central limit theorems in Chernozhukov et al. (2013, 2017, 2019). For relevant results in the

case in which each θ̂j is a sample mean, see Bai et al. (2019).

3.2 Marginal Confidence Sets for the Rank of a Single Population

3.2.1 A Simple Construction

Suppose we want to construct a confidence set for the rank of population j ∈ J . Define Sj ≡ {(j, k) : k ∈
J \ {j}}. For a confidence region Cn(1 − α, Sj) for ∆Sj (P ) that is rectangular in the sense of (4) with

{Cn(1− α, Sj , (j, k)) : (j, k) ∈ Sj}, define

N−j ≡ {k ∈ J \ {j} : Cn(1− α, Sj , (j, k)) ⊆ R−},

N+
j ≡ {k ∈ J \ {j} : Cn(1− α, Sj , (j, k)) ⊆ R+},

where R+ ≡ (0,∞) and R− = (−∞, 0). Using this notation, we have the following result:

Theorem 3.1. If Cn(1− α, S) satisfies (4) with S = Sj, then, for any P ,

P
{
|N−j |+ 1 ≤ rj(P ) ≤ p− |N+

j |
}
≥ P{∆Sj (P ) ∈ Cn(1− α, Sj)}.

If, in addition, Cn(1− α, S) also satisfies (5) with S = Sj, then the confidence set

Rn,j ≡
{
|N−j |+ 1, . . . , p− |N+

j |
}

(13)

satisfies (1).

The lower bound of the confidence set involves the number of confidence sets for the differences ∆Sj (P )

which lie entirely below zero, |N−j |. This quantity indicates the number of features θ(Pk) that are significantly

larger than that of population j. The rank of j must therefore be strictly larger than |N−j |. Similarly, |N+
j |

is the number of confidence sets that lie entirely above zero, so that there are |N+
j | populations with features

θ(Pk) strictly smaller than that of population j. The rank of j can therefore be at most p− |N+
j |.

The theorem shows that the confidence set Rn,j covers the rank of population j with probability con-

verging to at least 1−α, uniformly over distributions P ∈ P. As mentioned previously, Romano and Shaikh

(2012) provide conditions on P such that Cn(1−α, S) satisfies (5). The confidence set therefore asymptoti-

cally covers the rank of population j with probability no less than 1−α even under sequences of distributions

Pn with each Pn ∈ P. In particular, Rn,j covers the rank of j with probability converging to at least 1− α
even under sequences where some (or all) of θ(Pk,n) with k 6= j approach θ(Pj,n) as n → ∞. In this sense,

our results do not require the features θ(Pk) to be well separated from that of population j.

Remark 3.2. Choosing a one-sided (two-sided) confidence set Cn(1−α, Sj) for the differences ∆Sj (P ) leads

to a one-sided (two-sided) confidence set Rn,j for the rank. For instance, suppose Cn(1 − α, Sj) is a lower

bound such as (9). In that case, none of the confidence sets Cn(1− α, Sj , (j, k)) can lie entirely below zero,

so that |N−j | = 0 and the resulting confidence set for the rank is an upper bound: Rn,j = {1, . . . , p− |N+
j |}.
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Similarly, choosing Cn(1 − α, Sj) to be an upper bound such as (10) leads to the one-sided confidence set

Rn,j = {|N−j | + 1, . . . , p} on the rank. Finally, the equi-tailed confidence set in (12) leads to an equi-tailed

confidence set Rn,j in the sense that the asymptotic probability with which the true rank lies above the

confidence interval is bounded above by α/2, and similarly for the asymptotic probability that the true rank

lies below.

Remark 3.3. Suppose Cn(1 − α, Sj) satisfies (4)–(5) with S = Sj and that each Cn(1 − α, Sj , (j, k)) with

(j, k) ∈ Sj is consistent in the sense that its length tends to zero as n → ∞. If in addition all elements

of θ(P ) are distinct, then Rn,j = rj(P ) with probability approaching one and, as a result, the coverage

probability P{rj(P ) ∈ Rn,j} converges to one. This feature follows from the fact that if θ(Pj) > θ(Pk), then

with probability tending to one, Cn(1 − α, Sj , (j, k)) lies entirely above zero. Similarly, if θ(Pj) < θ(Pk),

then with probability tending to one, Cn(1− α, Sj , (j, k)) lies entirely below zero.

Remark 3.4. In the presence of ties, there is some ambiguity in the way in which we define the rank of

a population. Let rj(P ) ≡ 1 +
∑
k∈J 1{θ(Pk) > θ(Pj)} and r̄j(P ) ≡ p −

∑
k∈J 1{θ(Pk) < θ(Pj)} be the

smallest (i.e., best) and largest (i.e., worst) possible rank of population j. If population j is not tied with

any other population, then rj(P ) = r̄j(P ) and the rank is unique. On the other hand, when population j is

tied with at least one other population, then rj(P ) < r̄j(P ) and different definitions of the rank may select

different values from the interval Rj(P ) ≡ [rj(P ), r̄j(P )]. Suppose Cn(1 − α, S) satisfies (4) and (5) with

S = Sj . An inspection of the proof of Theorem 3.1 reveals that the confidence set Rn,j not only covers our

definition of the rank, rj(P ), in the sense of (1), but also any other “reasonable” definition of the rank in

the sense that

lim inf
n→∞

inf
P∈P

P
{
Rj(P ) ⊆ Rcont

n,j

}
≥ 1− α, (14)

where Rcont
n,j ≡ [min(Rn,j),max(Rn,j)] is the interval from the smallest to the largest value in the confidence

set Rn,j . In fact, when Cn(1− α, Sj) satisfies (5) with equality, one can show that there exist distributions

P so that the limiting coverage is exact:

lim
n→∞

P
{
Rj(P ) ⊆ Rcont

n,j

}
= 1− α . (15)

In this sense, our confidence set is not conservative. Under weak conditions, the limiting coverage probability

is strictly increasing in the number of differences ∆j,k(P ) that are nonzero. Therefore, the equality in (15)

is achieved only for distributions P for which all θ(Pj), j ∈ J , are equal.

Remark 3.5. In contrast to the confidence set Rn,j , those based on the bootstrap and Bayes approaches

such as those in Goldstein and Spiegelhalter (1996) perform poorly when, for some k 6= j, θ(Pk) is (close

to) equal to θ(Pj). For concreteness, consider the following bootstrap procedure. For a population j, denote

by θ̂∗j the estimator of θ(Pj) computed on a bootstrap sample and let r̂∗j be the rank computed using the

bootstrap estimators θ̂∗1 , . . . , θ̂
∗
p. Confidence sets for rj could then be constructed using upper and/or lower

empirical quantiles of r̂∗j conditional on the data. In Appendix A, we show that this intuitive approach

fails to satisfy the uniform coverage requirement (1) unless p = 2. When there are ties with population j

and p > 2, then the approach even fails the pointwise coverage requirement for a fixed P and, in fact, the

coverage probability tends to zero as p grows. For further discussion, see Xie et al. (2009) and Hall and

Miller (2009). Our approach, on the other hand, does not rely on a consistent estimator of the distribution of

estimated ranks but rather on the availability of simultaneous confidence sets for the differences ∆Sj (P ) with

asymptotically coverage no less than the desired level uniformly over P ∈ P. Such simultaneous confidence
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sets are available under weak conditions and, in particular, do not restrict the configuration of the features

θ(Pj). In comparison to Xie et al. (2009), our approach also circumvents smoothing of the indicator in the

definition of the ranks and thus the need for choosing such a smoothing parameter.

3.2.2 A Stepwise Improvement

In this section, we propose a stepwise method to improve the confidence set in Theorem 3.1. Our inference

problem shares some similarities with Tukey’s simultaneous comparisons of all pairwise means and Dunnet’s

comparisons of all means with a common control, which can be improved through the use of stepwise

procedures; see Chapter 8 of Westfall et al. (1999) and Section 9 of Lehmann and Romano (2005). One key

difference, however, is that the application of stepwise methods in our problem requires multiple tests that

control not only the familywise error rate, but also directional errors. Unfortunately, little is known about

control of directional errors in stepwise methods; Guo and Romano (2015) is one of only a few exceptions.

Consider the construction of a two-sided confidence set for the rank rj(P ) by inverting tests of the family

of two-sided hypotheses,

Hj,k : ∆j,k(P ) = 0 versus Kj,k : ∆j,k(P ) 6= 0 (16)

for (j, k) ∈ Sj . A directional error occurs when the null hypothesis is rejected and ∆j,k(P ) is declared

positive when in fact ∆j,k(P ) is negative; similarly, a directional error occurs if ∆j,k(P ) is declared negative

when it is positive. By making directional claims to multiple tests of two-sided hypotheses, one is increasing

the possibility of making errors and it is important to account for the possibility of such directional (or Type

3) errors. Define

S−j (P ) ≡ {(j, k) ∈ Sj : ∆j,k(P ) ≤ 0},

S+
j (P ) ≡ {(j, k) ∈ Sj : ∆j,k(P ) ≥ 0},

which are the sets of pairs of populations whose differences are smaller/larger than or equal to zero, and

Rej−j ≡ {(j, k) ∈ Sj : reject Hj,k and claim ∆j,k(P ) < 0},

Rej+j ≡ {(j, k) ∈ Sj : reject Hj,k and claim ∆j,k(P ) > 0},

which are the sets of pairs for which a test rejects the difference being equal to zero in favor of it being,

respectively, strictly smaller or larger than zero. The probability of making any mistake, either a false

rejection or an incorrect determination of a sign, is

mdFWERP ≡ P
{
S+
j (P ) ∩ Rej−j 6= ∅ or S−j (P ) ∩ Rej+j 6= ∅

}
, (17)

which Guo and Romano (2015) and Grandhi et al. (2019) refer to as the mixed directional familywise error

rate.

Our goal is to develop a multiple hypothesis testing procedure for (16) that controls the mdFWER and

then obtain the desired two-sided confidence set for the rank rj(P ) by replacing N−j and N+
j in (13) by Rej−j
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and Rej+j . We consider multiple hypotheses testing procedures that control the mdFWER in the sense that

lim sup
n→∞

sup
P∈P

mdFWERP ≤ α (18)

because the coverage probability of the resulting confidence set is bounded from below by one minus the

mdFWER:

Theorem 3.2. For any P ,

P
{
|Rej−j |+ 1 ≤ rj(P ) ≤ p− |Rej+j |

}
≥ 1−mdFWERP .

Furthermore, if Rej−j and Rej+j are computed by an algorithm for which (18) holds with mdFWERP as defined

in (17), then the confidence set

Rn,j ≡
{
|Rej−j |+ 1, . . . , p− |Rej+j |

}
(19)

satisfies (1).

In order to implement the result in Theorem 3.2 we need to devise a procedure for testing (16) that

controls the mdFWER. A general approach for controlling the mdFWER is due to Bauer et al. (1986). We

follow their idea and propose to test the family of one-sided hypotheses,

H ′k,l : ∆k,l(P ) ≤ 0 versus K ′k,l : ∆k,l(P ) > 0 (20)

for (k, l) ∈ S′j ≡ {(k, l) ∈ J ×J : k 6= l and one of k, l is equal to j}. Note that this family of null hypotheses

includes the hypotheses ∆j,k(P ) ≤ 0 and ∆k,j(P ) ≤ 0. With

Rej′
−
j ≡ {(j, k) ∈ Sj : reject H ′k,j and claim ∆j,k(P ) < 0},

Rej′
+
j ≡ {(j, k) ∈ Sj : reject H ′j,k and claim ∆j,k(P ) > 0},

the familywise error rate for testing the family (20) can be written as

FWER′P ≡ P
{

reject at least one true hypothesis H ′k,l with (k, l) ∈ S′j
}

= P
{
S+
j (P ) ∩ Rej′

−
j 6= ∅ or S−j (P ) ∩ Rej′

+
j 6= ∅

}
.

Notice that the mdFWER for testing the family of two-sided hypotheses in (16) is equal to the FWER

for testing the family of one-sided hypotheses in (20), i.e., mdFWERP = FWER′P . Therefore, instead of

devising a procedure that satisfies (18) we could instead devise one that satisfies

lim sup
n→∞

sup
P∈P

FWER′P ≤ α. (21)

Consider the following simple one-step procedure. Let Cn(1 − α, S′j) be the one-sided confidence set in

(9) with S = S′j . We reject any hypothesis H ′k,l, (k, l) ∈ S′j , for which Cn(1− α, S′j , (k, l)) does not contain

zero and claim ∆k,l(P ) > 0. Under suitable restrictions on P, this approach satisfies (21), but it can be

improved through a stepwise version similar to those in Romano and Wolf (2005):

Algorithm 3.1 (Stepdown Procedure).
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Step 0: Set I0 = S′j and s = 0.

Step 1: Form the confidence set Cn(1− α, S) in (9) with S = Is.

Step 2: Reject any H ′k,l with (k, l) ∈ Is for which 0 6∈ Cn(1− α, Is, (k, l)) and claim ∆k,l(P ) > 0.

(a) If no (further) null hypotheses are rejected, then stop.

(b) If any null hypotheses are rejected, then let Is+1 ⊂ Is denote the hypotheses that have not

previously been rejected, set s = s+ 1, and return to Step 1.

Under suitable restrictions on P, this stepwise procedure satisfies (21) when Cn(1−α, S) is, for example,

one of the confidence sets described in Section 3.1; see Romano and Shaikh (2012). By Theorem 3.2, the

confidence set

Rn,j ≡
{
|Rej′

−
j |+ 1, . . . , p− |Rej′

+
j |
}
,

where Rej′
−
j and Rej′

+
j are computed through Algorithm 3.1, therefore satisfies (1).

At this point it may be worth emphasizing again the special structure of the one-sided family of hypotheses

in (20): it contains inequalities of the form ∆j,k(P ) ≤ 0 as well as the reverse ∆k,j(P ) ≤ 0. The procedure

in Algorithm 3.1 treats all inequalities equally by ignoring this special structure. While this approach

controls directional errors there may exist better procedures that exploit this structure in some way. How to

improve upon our procedure is not obvious. For instance, a stepwise procedure that removes both hypotheses

whenever one of the two is rejected, in general, does not control directional errors (Shaffer (1980)). The

formulation of the inference problem in terms of controlling the mdFWER of the two-sided family clarifies

that alternative procedures for controlling the mdFWER that are developed in the future may also be used

for inference on ranks.

Remark 3.6. Consider the goal of constructing a one-sided confidence set for the rank rj(P ) with lower

endpoint equal to 1. In this case, it is not necessary to invert a two-sided family of hypotheses like (16), but

rather the one-sided family

Hj,k : ∆j,k(P ) ≤ 0 versus Kj,k : ∆j,k(P ) > 0 (22)

for all (j, k) ∈ Sj . In this case, there are no directional errors and the family of tests used must control the

usual FWER.

A stepwise procedure can be devised through a small modification of Algorithm 3.1. Notice that the

testing problem in (22) is identical to the one in (20) except that S′j is replaced by Sj . Therefore, Algo-

rithm 3.1, with S′j replaced by Sj , yields Rej′
−
j = ∅ so the resulting confidence set Rn,j in (19) has lower

endpoint equal to 1 and satisfies (1). Analogously, we can construct a one-sided confidence set for the rank

rj(P ) with upper endpoint equal to p.

Remark 3.7. Similarly as in Remark 3.4 it is easy to see that the stepwise procedure in Algorithm 3.1

satisfies (14) and there exists a P such that (15) holds. Unlike for the single-step method, however, the

stepwise procedure achieves the equality in (15) at distributions P for which there is at least one (not

necessarily all) k 6= j with θ(Pk) = θ(Pj).
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3.2.3 Discussion of Optimality

While the focus of this paper is the development of methods that are easily applied, are computationally

feasible, and possess proven coverage properties, we briefly discuss optimality considerations in this section.

To this end, note that our methodology permits the use of any multiple testing procedure for jointly testing

differences that controls the mdFWER. It is therefore natural to require these multiple testing procedures

to be optimal in some sense. Although little is known about optimality in multiple testing, some results

support our choices.

To elaborate, consider the problem of testing the family of hypotheses in (22) for a fixed population j ∈ J
and all (j, k) ∈ Sj in a way that controls the FWER. The limiting version of this testing problem corresponds

to the situation where we observe Z = (Z1, . . . , Zp) ∼ N(θ(P ),Σ(P )), with Σ(P ) known. Lehmann et al.

(2005) derive optimal multiple testing procedures for such one-sided testing problems; the resulting procedure

rejects based on the corresponding maximum statistic, analogous to our procedure. Moreover, more refined

optimality criteria lead to stepdown improvements, of the form also considered here. The only caveat to note

is that their analysis relies upon a monotonicity restriction that requires the testing procedure to behave

sensibly for any possible pair of realizations of z and z′ of Z with z ≥ z′. Here, ≥ is understood component-

wise. Also, the results do not apply to the two-sided testing problem considered in (16). In this situation,

there remain open questions concerning Type 1 error (or mdFWER) control, and optimality considerations

remain even harder. On the other hand, if the goal is the construction of a two-sided 1 − α confidence

interval, then it is reasonable to require that each endpoint should be a 1− α/2 confidence bound, i.e., the

chance that the true parameter lies above the upper endpoint or below the lower endpoint should be no

bigger than α/2. In other words, the interval should be equi-tailed. With this restriction, the methodology

for each endpoint can be obtained through one-sided tests. For testing the same family of null hypotheses in

a way that controls the expected number of false rejections (and thus the FWER as well), Spjøtvoll (1972)

derives optimal testing procedures that also resemble ours without the monotonicity restriction.

It may, of course, be possible to construct confidence intervals for ranks without explicitly relying upon

a multiple testing problem such as the one described above. In this way, it may be possible to improve upon

our construction of a confidence interval for rj(P ). On the other hand, our construction yields not only a

confidence interval for rj(P ), but also permits decisions about which populations have their corresponding

θ(Pk) above or below that of θ(Pj). The ability to make such decisions is attractive. If we require that any

procedure be able to provide such information as well, then any construction of confidence intervals for the

ranks must be derived by a multiple testing procedure such as the one described above.

3.3 Joint Confidence Sets for the Ranks of All Populations

In this section, we show how arguments similar to those in Sections 3.2.1 and 3.2.2 can be used to construct

simultaneous confidence sets for the ranks of all populations.

3.3.1 A Simple Construction

Define Sall ≡ {(j, k) ∈ J × J : j 6= k}. Let Cn(1 − α, Sall) be a confidence region for ∆Sall
(P ) that is

rectangular in the sense of (4) with {Cn(1− α, Sall, (j, k)) : (j, k) ∈ Sall}. Similarly to the definitions of N−j
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and N+
j , for each j ∈ J , denote by

N−j,all ≡ {k ∈ J \ {j} : Cn(1− α, Sall, (j, k)) ⊆ R−},

N+
j,all ≡ {k ∈ J \ {j} : Cn(1− α, Sall, (j, k)) ⊆ R+}

the sets of confidence sets for the differences ∆Sall
(P ) that lie entirely below and above zero. The set N−j,all

(N+
j,all) therefore contains all populations k whose features θ(Pk) are significantly larger (smaller) than that

of population j. The following result is analogous to Theorem 3.1:

Theorem 3.3. If Cn(1− α, S) satisfies (4) with S = Sall, then, for any P ,

P

⋂
j∈J

{
|N−j,all|+ 1 ≤ rj(P ) ≤ p− |N+

j,all|
} ≥ P{∆Sall

(P ) ∈ Cn(1− α, Sall)}.

If, in addition, Cn(1− α, S) also satisfies (5) with S = Sall, then the confidence set

Rjoint
n ≡

∏
j∈J

{
|N−j,all|+ 1, . . . , p− |N+

j,all|
}

(23)

satisfies (2).

Remarks similar to those after Theorem 3.1 also apply to Theorem 3.3.

Remark 3.8. An alternative approach to constructing a confidence set that satisfies (2) is based on simul-

taneous confidence sets for the features θ(P ) rather than for their pairwise differences ∆Sall
(P ). The recent

paper by Klein et al. (2020) is a special case of this approach. In Appendix B, we prove that, in some special

cases, the resulting confidence set for the ranking is strictly larger than our proposal in (23). In addition, in

our simulations in Appendix E, we find that their confidence set is always at least as large as ours, but in

most cases substantially larger.

An intuitive explanation for these findings is that the rank of a population depends on the features θ(P )

only through their pairwise differences. Although a 1− α simultaneous confidence set for the features θ(P )

can be transformed into a 1− α simultaneous confidence set for the vector of pairwise differences ∆Sall
(P ),

we show in Appendix B that such a construction covers the true differences with probability strictly larger

than 1 − α. In this sense, the simultaneous confidence set for the differences is conservative. In contrast,

our proposal is based on a nonconservative simultaneous confidence set for the vector of pairwise differences

(in the sense that the coverage probability is equal to 1 − α for some data-generating processes), which is

weakly shorter for all data-generating processes and strictly shorter for some. The improvement in size of

the simultaneous confidence set for the pairwise differences then translates into an improvement in size of

the confidence set for the rank.
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3.3.2 A Stepwise Improvement

Consider the goal of constructing a two-sided confidence set for all ranks. In order to describe a way in

which we can improve upon Theorem 3.3 consider the problem of testing (16) for all (j, k) ∈ Sall. Define

S−all(P ) ≡ {(j, k) ∈ Sall : ∆j,k(P ) ≤ 0} ,

S+
all(P ) ≡ {(j, k) ∈ Sall : ∆j,k(P ) ≥ 0}

and let Rej−j,all ≡ {k ∈ J : (j, k) ∈ Rej−all} and Rej+j,all ≡ {k ∈ J : (j, k) ∈ Rej+all} with

Rej−all ≡ {(j, k) ∈ Sall : reject Hj,k and claim ∆j,k(P ) < 0} ,

Rej+all ≡ {(j, k) ∈ Sall : reject Hj,k and claim ∆j,k(P ) > 0} .

The mixed directional familywise error rate for the problem of testing (16) for all (j, k) ∈ Sall is then

mdFWERP ≡ P
{
S+
all(P ) ∩ Rej−all 6= ∅ or S−all(P ) ∩ Rej+all 6= ∅

}
. (24)

The following result is analogous to Theorem 3.2.

Theorem 3.4. For any P ,

P

⋂
j∈J

{
|Rej−j,all|+ 1 ≤ rj(P ) ≤ p− |Rej+j,all|

} ≥ 1−mdFWERP .

Furthermore, if Rej−j,all and Rej+j,all are computed by an algorithm for which (18) holds with mdFWERP as

defined in (24), then the confidence set

Rjoint
n ≡

∏
j∈J

{
|Rej−j,all|+ 1, . . . , p− |Rej+j,all|

}
(25)

satisfies (2).

In order to implement the result in Theorem 3.4 we need to devise a procedure that controls the mdFWER.

As for the marginal confidence sets, we can control the mdFWER for the two-sided testing problem by

controlling the FWER,

FWER′P ≡ P{reject at least one true hypothesis H ′k,l with (k, l) ∈ Sall} , (26)

for the one-sided testing problem (20) with (k, l) ∈ Sall.

Consider the following simple one-step procedure. Let Cn(1− α, Sall) be the one-sided confidence set in

(9) with S = Sall. We reject any hypothesis H ′k,l, (k, l) ∈ Sall, for which Cn(1−α, Sall, (k, l)) does not contain

zero and claim ∆k,l(P ) > 0. Under suitable restrictions on P, this approach satisfies (21) with FWER′P

as defined in (26), but it can be improved through a stepwise version similar to those in Romano and Wolf

(2005):

Algorithm 3.2 (Stepdown Procedure).
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Step 0: Set I0 = Sall and s = 0.

Step 1: Form the confidence set Cn(1− α, S) in (9) with S = Is.

Step 2: Reject any H ′k,l with (k, l) ∈ Is for which 0 6∈ Cn(1− α, Is, (k, l)) and claim ∆k,l(P ) > 0.

(a) If no (further) null hypotheses are rejected, then stop.

(b) If any null hypotheses are rejected, then let Is+1 ⊂ Is denote the hypotheses that have not

previously been rejected, set s = s+ 1, and return to Step 1.

Under suitable restrictions on P, this stepwise procedure satisfies (21) with FWER′P as defined in (26)

when Cn(1 − α, S) is, for example, one of the confidence sets described in Section 3.1; see Romano and

Shaikh (2012). By Theorem 3.4, the confidence set

Rjoint
n ≡

∏
j∈J

{
|Rej−all|+ 1, . . . , p− |Rej+all|

}
,

where Rej−all and Rej+all are computed through Algorithm 3.2, therefore satisfies (2).

3.4 Confidence Sets for the τ-Best Populations

The goal of this section is to construct confidence sets for the τ -best populations, i.e., for given values of

τ ∈ J and α ∈ (0, 1), we want to construct (random) sets Jτ−bestn that satisfy (3).

Given a confidence set Rjoint
n ≡

∏
j∈J R

joint
n,j that satisfies (2), such as those in (23) and (25), it is

straightforward to construct Jτ−bestn satisfying (3) by defining

Jτ−bestn ≡
{
j ∈ J : τ ∈ Rjoint

n,j

}
. (27)

In this section, however, we propose a more “direct” approach which, in simulations, we have found to

perform better than the naive projection in (27). For a given value of τ ∈ J and some j ∈ J , consider the

hypothesis

Hj : rj(P ) ≤ τ.

Let π be a permutation of J such that θ(Pπ(1)) ≥ θ(Pπ(2)) ≥ . . . ≥ θ(Pπ(p)) and define K ≡ {K ⊂ J : |K| =
τ −1} to be the set of all subsets of J with cardinality τ −1 (i.e., K = {∅} when τ = 1). The null hypothesis

Hj is equivalent to

max
k∈J\{π(1),...,π(τ−1)}

{θ(Pk)− θ(Pj)} ≤ 0

and implies

min
K∈K

max
k∈J\K

{θ(Pk)− θ(Pj)} ≤ 0.

In order to form a test statistic for this inequality, we replace the features θ(Pj) by their estimators and

studentize by an estimator ŝek,j of the standard deviation of θ̂k − θ̂j :

Tn,j ≡ min
K∈K

max
k∈J\K

θ̂k − θ̂j
ŝek,j

. (28)
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Further, for I ⊆ J and K ∈ K, let

Tn,I,K ≡ max
j∈I

max
k∈J\K

θ̂k − θ̂j −∆k,j(P )

ŝek,j

and denote by Mn(x, I,K, P ) ≡ P {Tn,I,K ≤ x} the cdf of Tn,I,K . Finally, define the critical value

ĉn(1− α, I) ≡ max
K∈K

M−1n (1− α, I,K, P̂n) (29)

for some estimate P̂n of P . The following algorithm is a stepwise procedure for testing the family of null

hypotheses Hj with j ∈ J .

Algorithm 3.3.

Step 0: Set I0 = J and s = 0.

Step 1: Reject any Hj with j ∈ Is for which Tn,j > ĉn(1− α, Is).

(a) If no (further) null hypotheses are rejected, then stop.

(b) If any null hypotheses are rejected, then let Is+1 ⊂ Is denote the hypotheses that have not

previously been rejected, set s = s+ 1, and repeat Step 1.

The confidence set for the τ -best populations can then be defined as all those j ∈ J for which Hj is not

rejected by Algorithm 3.3.

Theorem 3.5. Assume that, for each K ∈ K,

lim inf
n→∞

inf
P∈P

P
{
Tn,Jτ−best

0 (P ),K ≤M
−1
n (1− α, Jτ−best0 (P ),K, P̂n)

}
≥ 1− α . (30)

Then the confidence set

Jτ−bestn ≡ {j ∈ J : Hj is not rejected } ,

computed through Algorithm 3.3, satisfies (3).

Under a uniform integrability condition on P, the uniform asymptotic coverage requirement (30) holds

for various choices of P̂n; see Romano and Shaikh (2012).

Remark 3.9. The computation of the critical value ĉn(1 − α, I) involves the maximization of M−1n (1 −
α, I,K, P̂n) over K ∈ K. For instance, when τ = 2, then K = {{1}, {2}, . . . , {p}}. For τ > 1, there are(
p

τ−1
)

elements in K, so the construction of the critical value becomes computationally more demanding the

larger τ . There are, however, at least two special cases in which the optimization becomes trivial. First of

all, to form a confidence set for the best population (τ = 1), no optimization is necessary because in this

case K = {∅}. Second, suppose θ̂1 − θ(P1), . . . , θ̂p − θ(Pp) are exchangeable. In this case, one can show that

Mn(1−α, I,K, P̂n) is independent of K, so the computation of the critical value ĉn(1−α, I) does not require

optimization over K ∈ K regardless of the value of τ .

Remark 3.10. An alternative approach to computing critical values for the test statistic in (28) is based

on an estimate of the set J \ {π(1), . . . , π(τ − 1)}. To see this first notice that (28) is bounded above by
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maxk∈K{θ̂k − θ̂j −∆k,j(P )}/ŝek,j with K = J \ {π(1), . . . , π(τ − 1)}. Letting Sn(·,K, P ) denote the cdf of

maxk∈K{θ̂k − θ̂j −∆k,j(P )}/ŝek,j for some set K ⊆ J , an infeasible critical value for (28) is therefore given

by S−1n (1− α, J \ {π(1), . . . , π(τ − 1)}, P̂n) with P̂n an estimate of P . To obtain a feasible counterpart, one

could replace the set J \ {π(1), . . . , π(τ − 1)} by an estimate as follows.

Suppose θ̂ is
√
n-consistent. Let π̂n be a permutation of J such that θ̂π̂n(1) ≥ . . . ≥ θ̂π̂n(p) and define

K̂n ≡
{
j ∈ J : θ̂j ≤ θ̂π̂n(τ) + εn

}
,

where {εn}n≥1 is a sequence of positive constants so that εn → 0 and εn
√
n → ∞. Then, it is easy to see

that the estimated set K̂n contains J \{π(1), . . . , π(τ −1)} with probability approaching one. Since S−1n (1−
α,K, P̂n) is monotone with respect to K, a feasible critical value is therefore given by S−1n (1 − α, K̂n, P̂n).

An obvious challenge in the implementation of this construction is the choice of εn (a problem that is similar

to moment selection), but an advantage is that it remains computationally feasible even for large values of

τ . Whether or not the alternative critical value is smaller or larger than that in (29) is not obvious to us

and thus left for future research.

It may also be possible to employ a two-step method as in Romano et al. (2014) by finding K̂n that

contains J \ {π(1), . . . , π(τ − 1)} with probability approaching 1 − β for 0 < β < α and using the critical

value S−1n (1− α+ β, K̂n, P̂n) instead.

Remark 3.11. The τ -worst populations in terms of θ1(P ), . . . , θp(P ) are also the τ -best populations in

terms of −θ1(P ), . . . ,−θp(P ). Therefore, the procedure described above can be used for the construction

of a confidence set for the τ -worst populations by simply changing the signs of the features θ(Pj) and their

estimators.

Remark 3.12. The problem of finding a subset Jτ−bestn satisfying (3) is related to the subset selection

problem in the PhD thesis by Gupta (1956). He assumed that θ̂j and θ(Pj) are the sample and population

mean, respectively, and are such that θ̂1 − θ(P1), . . . , θ̂p − θ(Pp) are i.i.d. from a normal distribution with

known variance. For this case, he proposed a confidence set for the identity of the population with the largest

mean. Many extensions of Gupta’s idea have been proposed since then; see Gupta and Panchapakesan

(1979, Chapters 11–19) for a review. Appendix C shows that this approach only guarantees coverage of

one, but not necessarily all, of the best populations in case there are ties. For example, if there are only

two populations (p = 2) and their means are equal, then the probability of Gupta’s confidence set covering

J1−best
0 is strictly less than the desired level 1 − α. In contrast, the confidence set proposed in this section

asymptotically covers Jτ−best0 for any τ ∈ J with probability no less than the desired level. Importantly,

unlike Gupta’s confidence set, our proposal does not rely on his i.i.d. assumption. Allowing for heterogeneity

in the populations’ distributions is important in our empirical applications in which the populations’ variances

differ substantially across populations.

3.5 Examining the Finite Sample Performance Through Simulations

Appendix E provides an extensive simulation study for examining the finite sample performance of the

confidence sets for the rank of a single population, for the ranks of all populations, and for the τ -best

populations. Here, we briefly summarize the findings from the main simulation experiment in Appendix E.1

about the confidence sets for the rank of a single population.
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The data generating process is calibrated to the data from the empirical application in Section 4.2 in

which we rank neighborhoods in the U.S. by two different measures of intergenerational mobility (correlational

estimates and movers estimates ; for their definitions, see Section 4.2).

First, we find that all methods control the coverage frequency at the desired nominal level for small

and large sample sizes, regardless of whether mobility measures are well separated, nearly tied, or tied, and

regardless of whether there are few or many neighborhoods to be ranked.

Second, coverage frequency and length of the confidence sets depend on how well the mobility measures

are separated. When the mobility measures of all neighborhoods are equal (i.e., all are tied), then our

proposed confidence set for the rank of a single neighborhood contains all or almost all possible values of

the rank, i.e., is large. The coverage frequency is close to the nominal level. On the other hand, when there

are no ties among the mobility measures, the coverage frequency is close to one and the expected length

is very small. To understand why this phenomenon is to be anticipated, note that when there are no ties

among the mobility measures, the confidence sets for the differences all exclude zero and lie on the correct

side of zero with probability approaching one as the sample size increases. The confidence sets for the ranks

are therefore small in the sense that they contain only the true rank with probability approach one as the

sample size increases. The coverage probability of the confidence sets therefore also approaches one (rather

than the nominal level) as the sample size increases.

Third, the alternative method based on Klein et al. (2020) generally leads to confidence sets that are

larger than those produced by our method.

Fourth, we find that the differences between the correlational and movers designs have substantial impact

on the length of the confidence sets. Even with large increases in the sample size, there still is considerable

uncertainty in the rank in the movers design whereas, in the correlational design, the confidence sets for the

rank are very informative.

4 Empirical Applications

4.1 Ranking of Developed Countries by Student Performance in PISA

We now apply our inference procedures from Section 3 to re-examine the question that motivates the PISA

test: Which countries do best and worst at reading, math, and science?

What is PISA and why does it matter?

Over the past two decades, the Organisation for Economic Co-operation and Development (OECD) have

conducted the PISA test. The goal of this test is to evaluate and compare educational systems across countries

by measuring 15-year-old school students’ scholastic performance on math, science, and reading. The PISA

test was first performed in 2000 and then repeated every three years. Each country that participates in a

given year has to draw a sample of at least 5,000 students to be tested. The results from the PISA test are

reported on a scale constructed using a generalized form of the Rasch model (OECD, 2017). For each domain

(reading, math, and science), the scale is constructed with a mean score of 500 and standard deviation of
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100. The scores are then tabulated by country in what has become known as PISA’s international league

tables.

Every three years, the release of these league tables stimulates a global discussion about education systems

and school reform in both international media and at the national level across many OECD countries. Indeed,

several governments have set national performance targets based on how well the country ranks in the league

tables (Breakspear, 2012). A low ranking in the PISA league table is known to cause media attention and

political discussion.

How much should we trust the ranking in PISA’s league tables?

In order to examine which countries do best and worst at reading, math, and science, we use publicly available

data from the 2018 PISA test. We restrict attention to the OECD countries. Since PISA never combines

math, science, and reading scores into an overall score, we perform our analyses separately for each domain.

For brevity, we focus on the league table for reading, but we report a complete set of results for each domain

in Appendix F.2.

In Appendix Figure 21, we present the point estimates and marginal confidence intervals (estimates plus

or minus twice the standard errors) for the expected reading test score in each OECD country.2 There is

considerable variation in the point estimates across countries. Estonia ranks first with an average test score

of around 523. The runner up is Canada, followed by Finland in third place. At the bottom of the league

table, one finds Chile, Mexico, and Columbia. These countries have reading scores that are more than 20%

lower than the countries at the top of the league table.

By applying our procedures from Section 3 to the point estimates and standard errors in Appendix

Figure 21, we can compute (i) the marginal confidence set for the rank of a given country, (ii) the simultaneous

confidence set for the ranks of all countries, and (iii) confidence sets for the τ -best (or the τ -worst) countries.

The confidence sets are implemented as for the simulations in Appendix E, using the stepwise procedures

(“DM.step”) for the confidence sets for ranks and the projection method (“DM.step”) for the τ -best and

τ -worst problems. All confidence sets are computed at the 95% nominal level.

The marginal and simultaneous confidence sets are presented in Figure 4. As evident from Panel A of

this figure, the marginal confidence sets are relatively narrow, especially for the countries at the top and the

bottom of the ranking. Citizens of these countries can thus be quite confident in the reading performance

of their pupils. For instance, the upper endpoint of the confidence set for Estonia’s rank suggests it is (with

95% confidence) the country with at least the fifth-highest expected test score. By comparison, the lower

endpoint of the confidence set for Columbia’s rank suggests (with 95% confidence) that it is among the

bottom two OECD countries in terms of scholastic performance on reading.

A natural question is whether the ranking of the OECD countries according to the expected reading score

remains informative if one allows inferences to be drawn simultaneous across all countries. The results in

Panel B of Figure 4 suggest the ranking remains fairly informative, especially at the top and at the bottom of

the PISA league table. Therefore, we can be fairly certain about which countries are at the top and bottom

of the ranking.

2The only exception is Spain, for which there is no data available.

24



Reading

τ - best

Rank Country Score 95% CS 95% 50% 5%

1 Estonia 523.02 [1, 6] 6 5 4
2 Canada 520.09 [1, 7] 7 6 5
3 Finland 520.08 [1, 7] 7 6 5
4 Ireland 518.08 [1, 8] 8 6 6
5 Korea 514.05 [1, 12] 12 11 8
: : : : τ - worst

32 Slovakia 457.98 [30, 34] 8 7 6
33 Greece 457.41 [29, 34] 7 6 5
34 Chile 452.27 [32, 34] 5 5 5
35 Mexico 420.47 [35, 36] 2 2 2
36 Colombia 412.30 [35, 36] 2 2 2

Table 2: The first five and the last five among the OECD countries ranked by PISA reading test scores with
the simultaneous 95% confidence sets (“CS”) for their ranks. “95%, 50%, 5% τ -best (-worst)” refer to the
size of the 95%, 50%, 5% confidence sets for the “τ -best (-worst)” countries, where τ ∈ 1..5 for the first five
countries and τ ∈ 5..1 for the last five countries. Note: Spain is absent in the Reading test score results so
the lowest possible rank for Reading is 36.

In Table 2, we present a PISA league table of our results. For brevity, we only list the countries with the

highest or the lowest point estimates. In the third and fourth columns, we report the point estimates and

the 95%, simultaneous confidence sets for the ranks of these countries. In the last three columns, denoted

by “τ -best” and “τ -worst’,’ we show the number of countries that cannot be ruled out with 95%, 50%, and

5% confidence as being among the set of countries with the the τ -highest or the τ -lowest expected PISA test

scores. A key insight from Table 2 is that only seven (five) countries cannot be ruled out as being among

the top (bottom) three countries in terms of scholastic performance on reading. This finding is remarkably

insensitive to the choice of confidence level, reflecting that the countries with relatively high (or low) point

estimates are statistically well separated from the other countries.

Remark 4.1. As discussed in the introduction, our methods and those developed by Andrews et al. (2018)

share some technical similarities, but answer distinct economic questions, and should thus be viewed as

complements, not substitutes. To illustrate this empirically, we apply the methods of Andrews et al. (2018)

to the PISA data and construct 95% confidence sets for the expected PISA scores of the countries with

the highest and the lowest estimated scores. For instance, their 95% “conditional” confidence set for the

expected reading score of the sample “winner”, Estonia, is (517.9, 526.6). This confidence set is fairly narrow

and thus one can be confident that the sample “winner” truly has a high reading score.

However, just like Estonia’s marginal confidence interval displayed in Appendix Figure 21, Andrews et al.

(2018)’s confidence set does not allow us to draw any conclusions about what is the true rank of Estonia nor

which country has true rank one. On the other hand, our marginal confidence sets for the rank of Estonia

tell us that (with 95% probability) its true rank lies between 1 and 5. In addition, our τ -best confidence

set for τ = 1 shows that (with 95% probability) there are 6 countries in total that could be the best. See

Appendix F.3 for more results and details.
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Figure 4: Panel A: rank of each OECD country by reading score with the 95% marginal confidence set for the
rank (“CS”). Panel B: rank of each OECD country by reading score with the 95% simultaneous confidence
set for the rank (“CS”). Different quartiles of the rankings are indicated with different colors.
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4.2 Ranking Neighborhoods by Intergenerational Mobility

We now apply our inference procedures from Section 3 to re-examine the question that motivates the work

of Chetty et al. (2014, 2018) and Chetty and Hendren (2018): Where in the United States is the land of

opportunity?

Data and background

The empirical analysis in this section is based on publicly available estimates of intergenerational income

mobility across areas in the United States. These estimates come from two studies that both use tax records

covering the U.S. population. The first is Chetty et al. (2018).3 They document how children’s expected

incomes conditional on their parents’ incomes vary according to the area (commuting zone (CZ), county, or

Census tract) in which they grew up. The second is Chetty and Hendren (2018).4 The goal of this paper is

to examine the degree to which the differences in income mobility across areas reflect causal effects of place.

Both studies present the empirical results through league tables and heat maps which rank places according

to point estimates of income mobility.

In the baseline analysis, Chetty et al. (2018) define the following measure of intergenerational mobility:

ȳcp ≡ E[yi|c(i) = c, p(i) = p] , (31)

where yi is child i’s percentile rank in the national distribution of incomes relative to all others in her birth

cohort; child i’s income is measured as her average income in the years 2014–2015 (aged 31–37 depending on

cohort); p(i) denotes the child’s parental income percentile in the national distribution of parental income in

child i’s birth cohort; and c(i) is the area in which the child i grew up. As in Chetty et al. (2018), we focus on

ȳc25, the expected income rank of children who grew up in area c with parents at the 25th percentile of the

national income distribution of parental income.5 Following Chetty et al. (2018), we refer to the estimates

of ȳc25 as correlational estimates of upward mobility.

In Appendix Figure 25, we present the estimates from Chetty et al. (2018) of ȳc25 for each CZ (top graph)

and county (bottom graph) with marginal confidence intervals (estimates plus or minus twice the standard

errors). These correlational estimates of upward mobility cover all the 741 commuting zones and 3208 of the

3219 counties.6 There is considerable variation in ˆ̄yc25 across areas. Since CZs typically comprise several

counties, it is not surprising that the standard errors tend to be a lot larger when a neighborhood is defined

as a county rather than as a CZ.

In Chetty and Hendren (2018), the parameters of interest are the exposure effects of spending an ad-

ditional year of one’s childhood in a given area. Consider a child i from a set of one-time movers from an

origin o(i) to a destination d(i). She moves at the age m(i) and spends A −m(i) time in the destination.

3The data files could be accessed following these links: commuting zones; counties and tracts. The variables of interest in
all three files are kfr pooled pooled p25 and kfr pooled pooled p25 se.

4The data files could be accessed following these links: commuting zones and counties. The variables of interest are
causal p25 czkr26 and causal p25 czkr26 se for commuting zones; causal p25 cty kr26 and causal p25 cty kr26 se for counties.

5Chetty et al. (2018) take several steps to simplify the estimation problem of the ȳc25 across areas. We use the main
estimates they report and refer to their paper for estimation details.

6Following Chetty et al. (2018) we use 1990 Commuting Zones classification and 2000 counties classification. For 11 counties
data is not available.
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The (vector of the) amount of time spent in a given area is denoted by:

eic ≡


A−m(i) if c = d(i)

mi if c = o(i)

0 otherwise

(32)

The exposure effects can be estimated by the regression model:

yi = αod + #»e i · #»µ + εi, (33)

where αod is an origin-by-destination fixed effect, #»e i ≡ (eic : c = 1, 2, . . .) is a vector of explanatory variables

for the number of years that child i lived in place c during her childhood, and the exposure effects are

given by the parameters #»µ ≡ (µcp : c = 1, 2, . . .) ≡ (µ0
c + µ1

cp : c = 1, 2, . . .), where p is the parental income

percentile. The estimates are normalized to be mean zero across places, so that µcp measures the exposure

effect relative to the average place. As in Chetty and Hendren (2018) we focus on µc25, the effect of spending

an additional year of childhood in area c for children with parents at the 25th percentile of the national

income distribution of parental income.7 Following Chetty and Hendren (2018), we refer to the estimates of

µc25 as movers estimates of exposure effects.

In Figure 26 in the Appendix, we present the estimates from Chetty and Hendren (2018) of µc25 for

each CZ (top graph) and county (bottom graph) with marginal confidence intervals (estimates plus or minus

twice the standard errors). These results cover 595 of the 741 CZs and 2367 of the 3219 counties.8 The point

estimates suggest considerable variation in exposure effects across areas. The standard errors are, however,

sizable, indicating that it can be difficult to draw firm conclusions about which areas produce more or less

upward mobility.

Given the relatively large standard errors, in a subset of the analyses, we restrict attention to the most

populous CZs and counties. The motivation for this sample restriction is to examine if one can achieve a

more informative ranking by restricting attention to larger areas. This sample restriction is also imposed in

a subset of the analyses of Chetty et al. (2014, 2018) and Chetty and Hendren (2018). In Appendix F.6, we

present point estimates of ȳc25 and µc25 with marginal confidence intervals for the 50 most populous CZs

and counties. As expected, the estimates are more precise for this restricted set of areas as compared to the

population of CZs and counties at large. The gains in precision are particularly salient for the correlational

estimates. By way of comparison, the standard errors of the movers estimates remain relatively large even

if one restricts attention to the most populous areas.

Before we present the confidence sets for the ranks, there are three remarks worth making. First, Chetty

and Hendren (2018) report both the raw estimates of the exposure effect of place c, µc25, as well as forecasts

that minimize the mean-squared-error (MSE) of the predicted impact of growing up in place c. We focus on

the raw estimates. This choice is, in part, because Chetty and Hendren (2018) do not report the confidence

intervals on the forecasts, but also because the forecasts are very similar to the correlational estimates in

most CZs. The reason is that the forecasts are constructed as weighted averages of the correlational estimates

(based on stayers) and the mover estimates, with greater weight on the mover estimates when they are more

7Chetty and Hendren (2018) take several steps to simplify the estimation problem of µc25 across areas. We use the main
estimates they report and refer to their paper for estimation details.

8Chetty and Hendren (2018) do not report results for the other counties and CZs due to limited data in these areas.
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precisely estimated. Given that most estimates of µc25 are very noisy, the forecast estimates are very similar

to the correlational estimates. Indeed, we calculate that in a majority of the CZs, the forecasts assign at

least 90 percent of the weight to the correlational estimates.

Second, the movers estimators may not necessarily be independent across CZs. While our inference

procedures accommodate dependence in a straightforward fashion, doing so would require not only standard

errors for each mobility estimate, but an estimate of the whole covariance matrix of the estimators. Such

information is unfortunately not available to us. Thus, we are unable to examine if the movers estimators

are dependent or incorporate such dependence in the construction of the confidence sets for the ranks.

Third, we follow closely the analyses of Chetty et al. (2014, 2018) and Chetty and Hendren (2018), and

do not try to change their definitions of neighborhoods to improve precision. If the commuting zones were

aggregated up to larger geographic regions such as states or Census regions, it is likely that one obtains a

more informative ranking. However, this would change the target parameters and the analyses might no

longer be suitable for the stated purposes, namely to draw the attention of policymakers to neighborhoods

that need improvements and to help families move to high-mobility neighborhoods. For these purposes,

local statistics are arguably needed. Indeed, in recent work, Chetty et al. (2018) define a neighborhood to

be a Census-tract, which encompasses a population of between 2,500 and 7,500 people, and is even more

granular than counties. They then construct heat maps (referred to as the Opportunity Atlas) by dividing

the Census-tracts into deciles based on their estimated value of ȳc25. A stated goal of these maps are to

identify local high-opportunity neighborhoods that are affordable to low-income families and providing an

input into the design of affordable housing policies. The estimates and standard errors of ȳc25 for each

Census-tract level is available here. When using this data, we find that both the marginal and simultaneous

confidence sets are far too wide to draw conclusions about the ranks of the neighborhoods at such a granular

level. For brevity, we chose not to report these results in the paper, focusing instead on CZs and counties

for which informative rankings are more likely.

Confidence sets used to rank places by intergenerational mobility

By applying our procedures from Section 3 to the point estimates and standard errors in Figures 25 and

26 in the Appendix, we can compute (i) the marginal confidence sets for the rank of a given place, (ii) the

simultaneous confidence sets for the ranks of all places, and (iii) the confidence sets for the τ -best (or the

τ -worst) ranked places. The confidence sets are implemented as for the simulations in Appendix E, using the

stepwise procedures (“DM.step”) for the confidence sets for ranks and the projection method (“DM.step”)

for the τ -best and τ -worst problems. All confidence sets are computed at the 95% nominal level unless noted

otherwise.

Ranking of the most populous places

We begin the empirical analysis by considering the 50 largest CZs by population size. Figure 5 presents the

ranking of these CZs according to the point estimates of ȳc25. Among the 50 largest CZs by population size,

the point estimates of ȳc25 range from 0.457 in San Francisco to 0.355 in Charlotte.

As evident from Panel A of Figure 5, the marginal confidence sets based on the correlational estimates

are relatively narrow, especially for the CZs at the top and the bottom of the ranking. Citizens of these CZs
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can thus be quite confident in the mobility ranking of their hometown. For instance, with 95% confidence,

San Francisco is among the top two of these 50 CZs in terms of income mobility. By comparison, with 95%

confidence, Charlotte is among the bottom three of these 50 CZs in terms of income mobility.

A natural question is whether the ranking of the CZs according to the correlational estimates remains

informative if one allows inferences to be drawn simultaneously across all places. The results in Panel B of

Figure 5 suggest this is indeed the case and we can have high confidence about which CZs are at the top

and bottom of the correlational ranking.

In Table 3, we report a league table of neighborhoods by income mobility. For brevity, we only list

the CZs with the highest or the lowest point estimates. The table presents two sets of results: Columns

2–7 are based on the correlational estimates of upward mobility ȳc25, while columns 8–13 are based on the

movers estimates of exposure effects µc25. For each set of results, we report the point estimates, the 95%

simultaneous confidence sets for the ranks, and the number of CZs that cannot be ruled out with 95%, 50%,

and 5% confidence as being among the set of CZs with the τ -highest or the τ -lowest upward mobility.

The key insight from the results in Table 3 is that the mobility rankings become much less informative

if one uses movers across areas to address concerns about selection. As evident from the simultaneous

confidence sets for µc25 in column 10 of Table 3, it is difficult to learn much about whether a particular CZ

has relatively high or low exposure effects. For example, the citizens of Seattle cannot rule out with 95%

confidence that the majority of other CZs have higher income mobility. Statistical uncertainty also matters

greatly for the τ -best and τ -worst results based on the exposure effects. Consider, for example, the fifth row

of columns 11-13 in Table 3. As these results show, none of the 50 CZs can be ruled out with 95% confidence

as being among the top five places in terms of exposure effects. Moreover, even with a confidence level as

low as 5%, only eight places can be ruled out as being among the top five CZs in terms of income mobility

As shown in Table 14 in the Appendix, the above conclusions do not materially change if we instead

consider the 50 largest counties by population size. On the one hand, it is possible to achieve a quite

informative ranking of these counties according to ȳc25. Both the marginal and the simultaneous confidence

sets are fairly narrow, and relatively few counties are included in the confidence sets for the τ -best or the

τ -worst places. On the other hand, the exposure effects µc25 are too imprecisely estimated to obtain an

informative ranking of counties according to income mobility. First of all, the marginal confidence sets for

µc25 are generally too wide to draw conclusions about whether a particular county has among the highest

or the lowest exposure effect. Furthermore, the τ -best and τ -worst results for µc25 show that the ranking

of counties by exposure effects is largely uninformative when inferences are drawn simultaneously across all

places.
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Figure 5: Panel A: point estimates and the 95% marginal confidence sets (“CS”) for the ranks of the 50
most populous CZs by ȳc25. Panel B: point estimates and the 95% simultaneous confidence sets (“CS”) for
the ranks of the 50 most populous CZs by ȳc25.
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Correlational Movers

τ - best τ - best

Rank CZ ˆ̄yc25 95% CS 95% 50% 5% CZ ˆ̄µc25 95% CS 95% 50% 5%

1 San Francisco 0.457 [1, 4] 4 3 2 Seattle 0.229 [1, 44] 44 38 34
2 Salt Lake City 0.457 [1, 4] 4 4 3 Wash DC 0.163 [1, 48] 48 41 38
3 Boston 0.453 [1, 5] 5 4 4 Cleveland 0.124 [1, 50] 50 47 40
4 Minneapolis 0.452 [1, 5] 5 5 5 Fort Worth 0.121 [1, 50] 50 48 40
5 San Jose 0.449 [3, 6] 6 6 6 Minneapolis 0.116 [1, 50] 50 48 42
...

...
...

... τ - worst
...

...
... τ - worst

46 Raleigh 0.369 [41, 47] 10 6 6 Charlotte -0.248 [1, 50] 49 48 44
47 Indianapolis 0.364 [46, 48] 5 5 4 Port St. Lucie -0.263 [2, 50] 49 48 42
48 Jacksonville 0.358 [47, 50] 4 3 3 Raleigh -0.278 [1, 50] 49 47 40
49 Atlanta 0.358 [48, 50] 3 3 3 Fresno -0.377 [3, 50] 48 40 24
50 Charlotte 0.355 [48, 50] 3 3 3 New Orleans -0.391 [3, 50] 48 37 23

Table 3: The first five and the last five among the 50 most populous commuting zones ranked by the
correlational mobility estimates on the left and by the movers mobility estimates on the right. “95% CS”
refers to the 95% simultaneous confidence set for the rank. “95% (50%, 5%) τ -best (-worst)” refer to the
size of the 95% (50%, 5%) confidence sets for the “τ -best (-worst)” commuting zones, where τ ∈ 1..5 for the
first five CZs and τ ∈ 5..1 for the last five CZs.

National ranking of places by income mobility

So far, we have focused on the 50 largest CZs and counties by population size. We now shift attention to all

CZs and counties, revisiting the key question of Chetty et al. (2014), Chetty et al. (2018) and Chetty and

Hendren (2018): Where in the United States is the land of opportunity?

In order to analyze this question, the authors present heat maps based on estimates of upward mobility.

They construct these maps by dividing the CZs (or the counties) into deciles based on their estimated value

of ȳc25. Panel A of Figure 6 presents the heat map for the CZs. This map is the same as presented in

Chetty et al. (2014). Lighter colors represent deciles with higher values of ȳc25. Equivalently, one can

interpret the heatmap as showing the ranks of CZs by assigning the same color to ranks in a decile for

easy readability (rather than a unique color to each rank). The point estimates of income mobility vary

significantly across areas. For example, CZs in the top decile have ˆ̄yc25 > 0.517, while those in the bottom

decile have ˆ̄yc25 < 0.362. Note that the 36th percentile of the family income distribution for children at age

31–37 is $26,800, while the 52nd percentile is $44,800; hence, the differences in upward mobility across these

areas correspond to substantial differences in children’s incomes.

Chetty et al. (2018) and Chetty and Hendren (2018) argue that heat maps such as the one in Panel A

of Figure 6 are useful to draw the attention of policymakers to low-mobility neighborhoods that need im-

provement and to help low-income families move to high-mobility neighborhoods. A natural question is how

informative the local statistics reported in these maps are about a given neighborhood having relatively high

or low income mobility compared to other neighborhoods. To answer this question, we present two sets of

new heat maps in Panels B and C of Figure 6. Each panel has two graphs: the one on the left uses the lower

endpoints and the one on the right uses the upper endpoints of the simultaneous confidence sets for the

ranks of all CZs. These confidence sets allow inferences to be drawn simultaneously across all CZs. Thus,

the new results in Figure 6 make precise what conclusions one can draw about which individual CZs have

relatively high and low mobility. The panels differ in the choice of confidence level: 95% in Panel B and 5%
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in Panel C.

For the interpretation of the results, it is useful to observe that, if the simultaneous confidence sets were

sufficiently narrow, then all the heat maps in Figure 6 would be identical. In this case, the point estimates

of ȳc25 and, thus, the heat map in Panel A (or, equivalently, in Chetty et al. (2014, p. 1591)), would give

a definite answer to the question of where in the United States is the land of opportunity. More generally,

how much we can learn about this question depends on the similarity of the heat maps in a given panel.

Consider, for example, Panel B. If the CZs that have lighter colors in the heat map on the left also have

lighter colors in heat map on the right, then we can with 95% confidence conclude that these areas have high

mobility. Conversely, if the CZs that have darker colors in the heat map on the right also have darker colors

in the heat map on the left, then we can with 95% confidence conclude that these areas have low mobility.

A visual inspection of the heat maps in Panel B of Figure 6 indicates that the uncertainty tends to be

too large to draw firm conclusions about which CZs have high or low income mobility compared to other

places in the United States. In other words, it is often not possible to tell apart with 95% confidence the CZs

where children have opportunities to succeed from those without such opportunities. Notable exceptions

include many of the individual CZs in the Southeast and in the Great Plains, where mobility is relatively low

and high, respectively. In these regions, it is frequently possible to determine with 95% confidence whether

a particular CZ has relatively high or low mobility compared to other CZs in the United States. Panel C

of Figure 6 shows that it is still not generally possible to tell apart high and low opportunity CZs with

confidence level as low as 5%.

We investigate these tentative conclusions in greater depth in Figure 7. The heat map in Panel A is

constructed by assigning the CZs to groups depending on the lower and upper endpoints of the simultaneous

confidence sets for the ranks of all CZs.9 A CZ is assigned to a high mobility group (“Top Half 95%”) if the

upper endpoint of its 95% simultaneous confidence set is in the top half10 of the national ranking of CZs, i.e.,

when the confidence set lies entirely in the top half of the ranking, indicating high mobility. A CZ is assigned

to a low mobility group (“Bottom Half 95%”) if the lower endpoint of its 95% simultaneous confidence set

is in the bottom half of the national ranking of CZs, i.e., when the confidence set lies entirely in the bottom

half of the ranking, indicating low mobility. The groups denoted by “5% CS \ 95% CS” show how the top

and bottom groups change as the confidence level is lowered from 95% to 5%. Finally, grey colors represent

the CZs that cannot be assigned to any of the above groups. The heat map in Panel B is constructed in the

same way, except the high (low) mobility group is now defined as the top (bottom) quartile in the national

ranking of the CZs.

The results in Figure 7 call for caution on concluding whether an individual CZ has high or low income

mobility compared to other CZs in the United States. In the national ranking of places by income mobility,

it is rarely possible to tell – even with confidence level as low as 5% – whether a given CZ has relatively

high or low income mobility compared to other CZs. There are, however, two main exceptions. With 95%

confidence, it is often possible to identify individual CZs with relatively low mobility in the Southeast and

individual CZs with relatively high mobility in the Great Plains.

As shown in Appendices F.11 and F.12, the national ranking becomes largely uninformative if one defines

a neighborhood to be a county or if one uses the movers estimates. In other words, it is not possible to draw

9In Appendix Figure 36, we show that this heat map does not materially change if we assign CZs to groups based on
marginal confidence sets.

10By “top half” and “bottom half” of a ranking of p CZs, we refer to {1, . . . , bp/2c} and {bp/2c+ 1, . . . , p}, respectively.
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95% CS for the Ranks

5% CS for the Ranks

Correlational Mobility Estimates

A

B

C

Figure 6: The map in Panel A is constructed by dividing the CZs into deciles based on the estimated values
of ȳc25, and shading the areas so that lighter colors correspond to higher absolute mobility or, equivalently,
lower (“better”) rank. The maps in Panels B and C show the lower (on the left) and the upper (on the
right) endpoints of simultaneous confidence sets for the ranks of all CZs for 95% and 5% confidence levels
respectively.
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Undetermined

Top Half 95%
5% CS \ 95% CS
Bottom Half 95%
5% CS \ 95% CS

Undetermined

Top Quartile 95%
5% CS \ 95% CS
Bottom Quartile 95%
5% CS \ 95% CS

A

B

Figure 7: The heat map in Panel A is constructed by assigning the CZs to groups depending on the lower and
upper endpoints of the simultaneous and marginal confidence sets for the ranks of all CZs. A CZ is assigned
to a high mobility group (“Top Half 95%”) if the upper endpoint of its 95% simultaneous confidence set
is in the top half of the national ranking of CZs, i.e., when the confidence set for the rank lies entirely in
the top half of the ranking, indicating high mobility. A CZ is assigned to the group “5% CS \ 95% CS”
if the upper endpoint of its 5% simultaneous confidence set is in the top half of the national ranking of CZs
but the upper endpoint of its 95% simultaneous confidence set is in the bottom half of the national ranking
of CZs. A CZ is assigned to a low mobility group (“Bottom Half 95%”), if the lower endpoint of its 95%
simultaneous confidence set is in the bottom half of the national ranking of CZs, i.e., when the confidence
set lies entirely in the bottom half of the ranking, indicating low mobility. A CZ is assigned to the group
“5% CS \ 95% CS” if the lower endpoint of its 5% simultaneous confidence set is in the bottom half of
the national ranking of CZs but the lower endpoint of its 95% simultaneous confidence set is in the top half
of the national ranking of CZs. Grey colors represent the CZs that cannot be assigned to any of the four
groups. The heat map in Panel B is constructed in the same way, except the high and low mobility groups
are now defined in terms of top and bottom quartiles in the national ranking of the CZs.
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firm conclusions about which counties in the United States have relatively high or low values of ȳc25. Nor is

it possible to say much about which CZs or counties produce more or less upward mobility as measured by

the exposure effects µc25.

Remark 4.2. Since both the correlational and the movers estimates are constructed from tax records

covering most of the U.S. population, one may wonder why we assess uncertainty in the ranks stemming

from uncertainty in such estimates. Before discussing this question, we emphasize that our paper is a re-

analysis of Chetty et al. (2018) and Chetty and Hendren (2018) and we thus closely follow these papers by

using their data, their estimates and their standard errors.

Whether or not it is reasonable to report standard errors in these applications depends on how the results

are subsequently used. For instance, if one is interested only in the population in the sample together with

the realized outcomes in that population, then one may not be concerned about uncertainty in estimates and

resulting rankings. On the other hand, one could be concerned about uncertainty from at least two sources.

First, the U.S. population may be viewed as having been drawn from a superpopulation and one wants to

draw inferences about features of the superpopulation rather than the realized population. Second, outcomes

based on which estimates are computed may contain sources of uncertainty such as unanticipated shocks to

incomes and one wants to draw inferences based on expected outcomes (averaging over the unanticipated

shocks) rather than the realized ones. Such unanticipated shocks are plausible sources of uncertainty in

both correlational and movers estimates. In the movers estimates, an additional source of uncertainty may

originate from shocks determining the timing of when families move.

Which of the above views is most appropriate depends on the concrete policy question that is to be

answered with the help of a ranking of neighborhoods. We are therefore hesitant to take a stance and simply

use the standard errors that are reported in the original papers. Other standard errors could be constructed

following, e.g. Abadie et al. (2020), but access to the microdata would be needed.

Remark 4.3. As discussed in the introduction and in Remark 4.1, our methods and those developed by

Andrews et al. (2018) share some technical similarities, but answer distinct economic questions, and should

thus be viewed as complements, not substitutes. To illustrate this empirically, we apply the methods of

Andrews et al. (2018) to the correlational estimates and construct 95% confidence sets for the true mobility

of the CZ with the highest estimated mobility.For instance, their 95% “conditional” confidence set for the

true mobility of the “winning” CZ among all CZs is (-2.70, 0.66). Since the confidence set includes zero (the

smallest possible value of the mobility measure), one cannot be confident that the sample “winner” truly

has high mobility. The corresponding confidence set for the “winning” CZ among only the 50 most populous

CZs, San Francisco, is (0.39, 0.46). While this confidence set excludes zero, comparing it to the range of

estimates for the 50 most populous CZs, it is still fairly wide. Taken together, the results using Andrews

et al. (2018)’s methods suggest there is considerable statistical uncertainty about the true value of upward

mobility at the top of the estimated ranking of CZs, even if one restricts the study to the 50 most populous

CZs.

However, just like the marginal confidence interval for the “winner” displayed in Figure 25 in the Ap-

pendix, Andrews et al. (2018)’s confidence sets do not allow us to draw any conclusions about what is the

true rank of the sample “winner” nor which CZ has true rank one. In contrast, our confidence set for the

rank of San Francisco among the 50 most populous CZs tells us that (with 95% confidence) its true rank

lies between 1 and 2. In addition, our τ -best confidence set for τ = 1 shows that (with 95% confidence)
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there are only 4 CZs that could be the best. It is interesting to note that our confidence sets for the ranks

are very narrow even though Andrews et al. (2018)’s confidence sets for the true mobility of the “winner”

are fairly wide. This finding illustrates that it can be possible to achieve a statistically informative ranking

even if one cannot draw firm conclusions about the true value of the sample “winner”. See Appendix F.10

for more results and details.

4.3 Illustrating the Policy Implications of the Uncertainty in the Rankings

The estimates of Chetty et al. (2014, 2018) and Chetty and Hendren (2018) have been highly influential both

among policymakers and researchers. For example, the rankings of neighborhoods by (point estimates of)

intergenerational mobility play a key role in Chetty’s 2014 Testimony for the United States Senate Committee

on the Budget (Chetty, April 1, 2014). In this testimony (pages 6 and 7), he emphasizes that policy should

target areas that are ranked at the bottom of the league tables based on their estimates of upward mobility:

“Since rates of upward mobility vary widely across cities, place-based policies that focus on specific cities –

such as Charlotte or Milwaukee – may be more effective than addressing the problem at a national level.”

and, moreover, that it is key to disseminate information about which areas have relatively high and low

estimates of upward mobility:

“Perhaps the most cost-effective way to improve mobility may be to publicize local statistics on economic

mobility and other related outcomes. Simply drawing attention to the areas that need improvement can

motivate local policy makers to take action. Moreover, without such information, it is difficult to determine

which programs work and which do not. The federal government is well positioned to construct such statistics

at minimal cost with existing data. The government could go further by offering awards or grants to areas

that have substantially improved their rates of upward mobility. Shining a spotlight on the communities

where children have opportunities to succeed can enable others to learn from their example and increase

opportunities for economic mobility throughout America.”

In light of the large degree of uncertainty, however, one may be concerned that such local statistics (e.g.,

the league tables and heat maps) do not necessarily contain valuable information about upward mobility. As

a consequences of this uncertainty, it can also be problematic to use such statistics to disseminate information

or target interventions. The spotlight might be shining on noise, not signal.

In order to illustrate the issues that may arise if one chooses to design interventions based on the lo-

cal mobility statistics, we next re-visit the recent Creating Moves to Opportunity (CMTO) experiment of

Bergman et al. (2019). This experiment is a collaboration between researchers and public housing authorities

to introduce and evaluate interventions to “create moves to opportunity” for low-income families.

The CMTO experiment

The motivation for the CMTO experiment is the argument that low-income families tend to live in neigh-

borhoods with low upward mobility. In order to understand how policy may be designed to help low-income

families move to neighborhoods with higher mobility rates, the authors perform a randomized controlled

trial with housing voucher recipients in Seattle and King County. A treatment group of low-income families
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were offered assistance and financial support to find and lease units in areas that were classified as high

upward-mobility neighborhoods.

The authors “define high upward-mobility neighborhoods as Census tracts that have point estimates of

upward income mobility in approximately the top one-third among tracts in the Seattle and King County

area” (Bergman et al., 2019, p. 10, Section III.B Defining Opportunity Areas).11 Following this definition, we

use the estimates of ȳc25 for the 397 tracts in the Seattle and King County area to classify areas as upward-

mobility neighborhoods.12 Figure 32 in the Appendix plots these estimates alongside marginal confidence

intervals (estimates plus or minus twice the standard errors). The point estimates vary considerably, but the

standard errors are relatively large. Figure 33 in the Appendix presents a map of Seattle and King County

which shows the location of the 132 tracts that have point estimates of upward income mobility in the top

one-third, and, as a result, are classified by us as high upward-mobility neighborhoods.

Remark 4.4. Chetty et al. (2020) show that mobility estimates across tracts are (significantly) spatially

correlated even though the estimates are computed from samples that are independent across tracts. They

argue that, therefore, the estimates in Figure 32 in the Appendix are more precise than their own standard

errors suggest. We do not agree with this conclusion for the following reason. For simplicity consider two

tracts c = A,B. From each tract we draw an i.i.d. sample from the distribution Fc in tract c, independently

of the data in the other tract. We then construct estimates ˆ̄yc25 of the mobility measure ȳc25, the latter

being a feature of the distribution Fc. Therefore, the estimates ˆ̄yA25 and ˆ̄yB25 being similar must either

come from finite-sample bias in the estimates or from true mobility ȳA25 and ȳB25 being similar. The latter

might occur, for instance, when the distributions FA and FB are similar. Therefore, similarity of mobility

estimates across tracts is unrelated to the precision with which they are estimated.

Chetty et al. (2020) also argue that there is significant variation in true mobility. This argument involves

decomposing the variance of estimates across tracts, ˆ̄yc25, c = 1, 2, . . ., into the variance of true mobility

ȳc25, c = 1, 2, . . ., (the “signal”) and into the variance of “noise”. Since “noise” turns out to be low in this

decomposition, they argue that therefore there is large variation in the signal, i.e., true mobility. However,

a small variance of the “noise” across tracts does not imply that the precision of any particular tract-level

mobility estimate is small.13

Does the classification of an opportunity neighborhood reflect noise or signal?

In light of our previous findings, one might worry that a tract defined as a high upward-mobility neighborhood

does not have statistically higher mobility rates as compared to the other tracts. To examine this, we

11In practice, the authors make a few adjustments to this definition. We refer to Appendix A of Bergman et al. (2019) for a
discussion of these adjustments.

12These estimates are available at opportunityinsights.org. To address concerns about noise in the correlational estimates
Bergman et al. (2019) also construct forecasts of upward mobility at the tract level. The forecasts are weighted averages of
the correlational estimates of ȳc25 and predictions based on observable characteristics of the tracts, with greater weight on the
correlational estimates when they are more precisely estimated. Given that most correlational estimates are very noisy, the
forecast estimates are very similar to the predictions based on covariates. For two reasons, we do not consider the forecasts.
First of all, Bergman et al. (2019) do not report standard errors for the forecasts, which we would need for the implementation
of our method. Second, forecasts are based on covariates such as the estimated mobility rate of the tract based on information
on children’s income around age 22. We conjecture that this estimate of lagged upward mobility suffers from similar amounts
of noise as the estimates of mobility when children are in their 30s. Therefore, we expect the forecasts of upward mobility to
be similarly noisy as the estimates of ȳc25 that we use.

13In fact, Chetty et al. (2018) estimate the variance of “noise” as the average squared standard error of the tract-level estimates
(after accounting for additional noise that was introduced to guarantee privacy of individuals in the sample). Therefore, a small
“noise” variance implies that the average of the standard errors is small, but not necessarily any individual standard error.

38

https://opportunityinsights.org/wp-content/uploads/2018/10/tract_outcomes_dta.zip


Panel A: Tracts

all tracts 50 most populous tracts
κ top group worst τ -best best τ -worst bottom group top group worst τ -best best τ -worst bottom group

1/3 1 . . . 132 397 1 266 . . . 397 1 . . . 17 50 1 34 . . . 50
1/4 1 . . . 99 397 1 299 . . . 397 1 . . . 12 49 1 39 . . . 50
1/10 1 . . . 40 397 1 358 . . . 397 1 . . . 5 49 4 46 . . . 50
1/100 1 . . . 4 397 7 394 . . . 397

Panel B: CZs

all CZs 50 most populous CZs
κ top group worst τ -best best τ -worst bottom group top group worst τ -best best τ -worst bottom group

1/3 1 . . . 247 734 9 495 . . . 741 1 . . . 17 20 31 34 . . . 50
1/4 1 . . . 185 734 9 557 . . . 741 1 . . . 12 15 37 39 . . . 50

Table 4: Panel A: “top group” shows the ranks of the κ fraction of tracts with the largest estimated mobility
(among the 50 most populous tracts and among all tracts, respectively). “worst τ -best” shows the rank of
the worst tract in the 95% confidence set for the τ -best tracts, where τ is set to κ times the number of
tracts. Similarly, “bottom group” and “best τ -worst” show the ranks of the κ fraction of tracts with the
smallest estimated mobility and the rank of the best tract in the 95% confidence set for the τ -worst. Panel
B: shows the corresponding results of Panel A for CZs instead of tracts. The confidence sets are implemented
as described in Appendix E.3, using the stepwise procedure (“DM.step”).

compute a 95% confidence set for the τ -best tracts in the Seattle and King County, where τ is set equal

to 132 (approximately one-third). The confidence set is implemented as described in Appendix E.3, using

the stepwise procedure (“DM.step”). In the first row of Panel A of Table 4 we show the index of the worst

(best) tract in the τ -best (-worst) confidence set. We find that tract with 397th mobility estimate could be

among the top one-third, and, as a result, be classified as high upward-mobility neighborhood according to

our definition. In addition, even the first tract lies in the confidence set for the τ -worst. Thus, we conclude

the classification of a given tract as a high upward-mobility neighborhood may simply reflect statistical

uncertainty (“noise”) rather than particularly high mobility (“signal”).

A natural question is whether an alternative definition could have reduced the noise in the classification.

We investigate this in the second to fourth rows of Table 4, showing the largest and smallest integers in the

95% confidence sets for the τ -best and the τ -worst when τ is set to 1/4, 1/10, or 1/100 of the tracts. We

see that the tract ranked 397th could even be among the top-4 (approximately, 1/100 of the tracts) tracts

and that the tract ranked 7th could be among the worst-4. The results are very similar when we try to

determine the top 1/3, 1/4, or 1/10 only among the 50 most populous tracts. Taken together, these results

suggest that changes in the definition of high upward-mobility neighborhoods at the tract-level is unlikely

to reduce the noise in the classification.

To show how, in principle, the τ -best and τ -worst confidence sets could be used to select treatment

and control groups consider Panel B of Table 4. It shows the analogous results to those in Panel A for

CZs. Among the 50 most populous CZs, the confidence sets for the τ -best and the τ -worst with τ = 17

(approximately one-third of the CZs) do not overlap. Only the CZs ranked 20th or better could be among

the top one-third while only CZs ranked 31st or worse could be among the bottom one-third. Therefore, we

can be confident that none of the CZs classified as top one-third are in fact among the bottom one-third

and vice versa. This finding suggests that researchers could define the top/bottom one-third of the 50 most

populous CZs as treatment/control group in an experiment.
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Implications of the noise in the classification of an opportunity neighborhood

The noise in the classification raises the question of whether, and under what conditions, one could be

confident that CMTO would actually help families move to high upward-mobility neighborhoods, prior to

the experiment taking effect. In other words, assuming that the correlational estimates of tract-level upward

mobility can be given a causal interpretation, would one then expect a positive average treatment effect of

CMTO?

The answer to this question depends on what assumptions, if any, one is willing to make about the

location choices of the treatment group in response to CMTO.14 Without assumptions on these location

choices, it is insufficient to test whether average upward mobility among tracts estimated to be in the top

one-third (the treatment group) is higher than those estimated to be in the bottom two-thirds (the control

group). Rather, the key question becomes whether some of the tracts estimated to be in the bottom two-

thirds can have mobility higher than the tracts estimated to be in the top one-third. To see why, consider

the following two examples.

Suppose average mobility among tracts estimated to be in the top one-third is higher because of one tract

having high mobility while all other tracts estimated to be in the top one-third have mobility lower than

those in the remaining two-thirds. In that case, only families moving to that single high-mobility tract are

treated with higher mobility while all other families are treated with lower mobility. The average effect of

the program on mobility among all families in the experiment may very well be negative. Of course, whether

or not this is the case will depend on the distribution of mobility across neighborhoods to which families

actually moved as well as the mobility of the neighborhoods from which they are moving. Without making

assumptions about the individual tracts the families would move from and to as a result of the experiment,

the average treatment effect can be zero, positive or negative.

Suppose instead the average mobility among tracts estimated to be in the top one-third is higher because

all such tracts have high mobility except for one tract that has mobility lower than those in the remaining

two-thirds. In that case, families moving to that single low-mobility tract are treated with lower mobility

while all other families are treated with higher mobility. The average effect of the program on mobility

among all families in the experiment may still be negative. As before, whether or not this is the case will

depend on the distribution of mobility across neighborhoods to which families actually moved as well as

the mobility of the neighborhoods from which they are moving. Without making further assumptions, the

average treatment effect can therefore again be zero, positive or negative.

Of course, these are extreme cases but they help make an important point: Whether the tracts estimated

to be in the top one-third have higher rates of upward mobility on average is neither sufficient nor necessary

for low income families to be moving to neighborhoods with higher upward mobility as a result of the

experiment.15 Without making assumptions about the individual tracts that the treated families would

move from and to in response to the experiment, the relevant condition to test is that none of the tracts

estimated to be in the bottom two-thirds can have mobility higher than the tracts estimated to be in the top

one-third. Above, we examined this, finding that if one uses a confidence level of 95%, no tract can be ruled

14Given the realized location choices of the families in CMTO, one could in principle check or modify any assumption made.
We do not do this, however, as data on location choice are not available to us.

15This argument does not rely on heterogeneous effects of place or non-random mobility. Even if the effect of a given tract
is the same for all families or low-income families move randomly to tracts estimated to be in the top one-third, the average
effect of the experiment may very well be negative
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out as being among the actual top one-third. This finding suggests that assumptions on location choices

indeed are needed to be statistically confident at conventional levels, prior to the experiment, that CMTO

would have a positive impact.

One possible assumption to make is that the treated families move from randomly selected tracts esti-

mated to be in the bottom two-thirds to randomly selected tracts in the top one-third. Under this assumption,

the relevant condition to test is whether the average upward mobility among tracts estimated to be in the

top one-third is higher than in the bottom two-thirds. However, when performing this test, it is necessary

to address the concern that the classification is based on the estimated levels of upward mobility, not the

true ones. To do so, one may use the methods of Andrews et al. (2018). When we apply their method to

the CMTO data, we estimate a 95% conditional confidence set of (-0.030, 0.091) for the difference between

the average upward mobility of the tracts estimated to be in the top one-third and the bottom two-thirds of

tracts. This means that conditional on the identities of tracts in the top one-third we cannot rule out with

95% confidence that they have lower average upward mobility than tracts in the bottom two-thirds.

Remark 4.5. Andrews et al. (2018) also analyze the CMTO data. Their analysis differs in three ways.

First, we use the same data as in Bergman et al. (2019), namely the tracts that were either in the treatment

or control group of the CMTO experiment. In contrast, Andrews et al. (2018) include additional tracts in

the Seattle CZ that were neither in the treatment nor in the control group of CMTO. Second, we compare

tracts estimated to be in the top one-third to those in the bottom two-thirds, as these are the two groups

actually used for the definition of treatment and control group in CMTO. In contrast, Andrews et al. (2018)

compare the average upward mobility of the tracts estimated to be in the top one-third to the average

upward mobility of all tracts. In Table 16 in the Appendix, we show that none of our conclusions change if

we instead use the same tracts and comparison as in Andrews et al. (2018).

A third difference is that Andrews et al. (2018) consider two types of confidence sets. While we refer to

their paper for details, it is useful to observe how these confidence sets differ. The first type of confidence

set is valid conditional on a (random) set of tracts estimated to be in the top one-third. The second type

of confidence set is unconditional and averages over this (random) set of tracts. For unconditional validity,

Andrews et al. (2018) develop two procedures for constructing confidence sets, a projection and a hybrid

procedure, the latter typically delivering shorter confidence sets than the former while satisfying the same

unconditional coverage guarantee.

Interestingly, we reach a different conclusion if we rely on the unconditional confidence sets instead of the

conditional ones. As shown in Table 16 in the Appendix, we estimate the unconditional hybrid confidence

set to be (0.034, 0.091) for the difference between the average upward mobility of the tracts estimated to

be in the top one-third and the bottom two-thirds of tracts. As argued by Andrews et al. (2018), the

choice between conditional and unconditional inference methods is necessarily context-specific, as it depends

on the extent to which we care about validity conditional on selecting a given target. In the context of

CMTO, conditional inference is relevant to answer the question of the expected effect of moving to the tracts

that were actually classified as high upward-mobility neighborhoods. Unconditional inference, on the other

hand, is relevant if the primary goal is to assess the efficacy of hypothetical experiments targeting the top

one-third of Census tracts, with less focus on the collection of tracts that were actually classified as high

upward-mobility neighborhoods in CMTO.
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5 Concluding remarks

In this paper we show how to account for uncertainty in the ranking of different populations according

to the value of some feature of each population. We consider both the problem of constructing marginal

confidence sets for the rank of a particular population as well as simultaneous confidence sets for the ranks

of all populations. We show how to construct such confidence sets under weak assumptions.

We also provide two empirical examples in which our method produces highly informative confidence sets

for ranks. One is the ranking of countries according to the results on the PISA test. The other is the ranking

of the most populous commuting zones or counties in the United States according to upward mobility. Such

rankings by upward mobility, however, become much less informative if one includes all commuting zones of

counties, if one defines neighborhoods with even more granularity (e.g., by considering Census tracts), or if

one uses movers across areas to address concerns about selection.

A natural question is why it is difficult to achieve an informative ranking in certain cases. Based on

our simulations, in which our confidence sets in some cases cover the true ranking with probability close

to one, one may be concerned that this phenomenon stems from a lack of power of our procedures. We

emphasize, however, that these situations may arise precisely when the ranking is most informative. As

explained in Section 3.5, to see this it is helpful to consider the case in which standard errors of the mobility

estimates, say, are nearly zero for all neighborhoods (relative to the differences in mobility estimates across

neighborhoods). Due to the discreteness of the ranks, the ranking has essentially no uncertainty and any

“reasonable” confidence set should cover the true ranking with probability (close to) one. In other situations

when there is more uncertainty in the ranking, our method achieves coverage closer to the nominal level.

These features are borne out in our simulations.

We therefore argue that a more appropriate explanation for why it may not be possible to achieve an

informative ranking is that researchers may simply be demanding too much from the data. This explanation

is most plausible when estimates vary substantially across populations but standard errors are large, when

standard errors are small but the estimates do not vary much across populations, or when both standard

errors are large and estimates do not vary much across populations. To think about when our (or any)

approach will deliver an informative ranking, a useful starting point is the naive pairwise comparisons that

ignore the multiple testing issue. Take, for example, the 397 tracts in the CMTO experiment in Seattle.

To obtain a complete ranking of these tracts by upward mobility, it is necessary to compare 78,606 unique

pairs. The problem is that at most 30.2% of these pairs consist of tracts that differ significantly at the 95%

significance levels. Importantly, the conclusion that 30.2% of the pairs are significantly different ignores

that one has performed 78,606 comparisons, so even by chance, many of these comparisons will show up

as significant when in fact they are not. Indeed, when taking the multiple testing into account, it is clear

the uncertainty is too large to achieve an informative ranking of the tracts in Seattle according to upward

mobility.
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Appendix A The “Naive” Bootstrap Undercovers

In this section, we show that the “naive” bootstrap as described in Remark 3.5 does not satisfy the uniform coverage requirement

unless p = 2. Furthermore, we show that when there are ties and p > 2, then the approach even fails the pointwise coverage

requirement for a fixed P and, in fact, the coverage probability tends to zero as p grows.

To simplify the subsequent discussion, we focus on the case in which the estimators of the features θ(Pj) are independent

and normally distributed, θ̂j ∼ N (θ(Pj), 1) for all j ∈ J . In this case, we obtain finite-sample results, but they easily extend

to the asymptotic case when n → ∞ and variances are unknown. Suppose θ(Pj) = 0 for all j ∈ J . Consider the parametric

bootstrap in which we draw θ̂∗j ∼ N(θ̂j , 1) independently, conditional on the data θ̂ = (θ̂1, . . . , θ̂p)′.

Suppose we want to construct a one-sided confidence set for the rank of population j, for which the upper endpoint is equal

to p:

R∗n,j ≡
{
L̂∗j , . . . , p

}
,

where L̂∗j is the α-quantile of r̂∗j , conditional on the data θ̂. Further suppose all populations are tied with θ(Pj) = 0 for all

j ∈ J , so that all ranks are equal to one, rj(P ) = 1 for all j ∈ J . For R∗n,1 to cover the rank r1(P ), it must be the case that

the event

E ≡
{
L̂∗1 = 1

}
=
{
P{θ̂∗1 > max{θ̂∗2 , . . . , θ̂∗p}|θ̂} ≥ α

}
holds. Consider first p = 2. Then,

P
{
θ̂∗1 > max{θ̂∗2 , . . . , θ̂∗p}

∣∣∣ θ̂} = P
{
θ̂∗1 > θ̂∗2

∣∣∣ θ̂}
= P

{
θ̂∗1 − θ̂1 − (θ̂∗2 − θ̂2)

√
2

>
θ̂2 − θ̂1√

2

∣∣∣∣∣ θ̂
}

= 1− Φ

(
θ̂2 − θ̂1√

2

)

so that

P{E} = P

{
1− Φ

(
θ̂2 − θ̂1√

2

)
≥ α

}
= 1− α .

Therefore, the bootstrap confidence interval R∗n,1 covers r1(P ) with the desired probability.

Now consider p > 2. Let M be the index such that θ̂M = max{θ̂2, . . . , θ̂p}. First note that

P
{
θ̂∗1 > max{θ̂∗2 , . . . , θ̂∗p}

∣∣∣ θ̂} < P
{
θ̂∗1 > θ̂∗M

∣∣∣ θ̂} (34)

= P

{
θ̂∗1 − θ̂1 − (θ̂∗M − θ̂M )

√
2

>
θ̂M − θ̂1√

2

∣∣∣∣∣ θ̂
}

= 1− Φ

(
θ̂M − θ̂1√

2

)

Let F be the event

F ≡
{

1− Φ

(
θ̂M − θ̂1√

2

)
≥ α

}
.

Clearly, by the strict inequality in (34), E ⊂ F and P{E} < P{F}. Letting z1−α be the (1 − α)-quantile of the standard

normal distribution, we have

P{F} = P

{
θ̂M − θ̂1√

2
≤ z1−α

}
= P

{
max{θ̂2, . . . , θ̂p} − θ̂1√

2
≤ z1−α

}
,

which, for example, is strictly less than P{(θ̂2 − θ̂1)/
√

2 ≤ z1−α} = 1 − α. Therefore, P{E} < 1 − α and the confidence set

R∗n,1 does not cover the rank r1(P ) with the desired probability. Moreover, as p→∞, max{θ̂2, . . . , θ̂p} → ∞ in probability, so

the coverage probability tends to zero.
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Appendix B An Alternative Construction of Confidence Sets for

Ranks

Let C̃n(1− α) be a confidence set that is rectangular in the sense that

C̃n(1− α) =
∏
j∈J

C̃n(1− α, j)

for suitable sets {C̃n(1 − α, j) : j ∈ J}, and that simultaneously covers the vector of features θ(P ) with limiting probability

1− α:

lim inf
n→∞

inf
P∈P

P{θ(P ) ∈ C̃n(1− α)} ≥ 1− α .

For instance, the confidence set could be constructed as in Example 3.7 of Romano and Shaikh (2012). Define

Ñ−j ≡
{
k ∈ J \ {j} : C̃n(1− α, j) lies entirely below C̃n(1− α, k)

}
Ñ+
j ≡

{
k ∈ J \ {j} : C̃n(1− α, j) lies entirely above C̃n(1− α, k)

}
.

Then, it is easy to see that

lim inf
n→∞

inf
P∈P

P
{
|Ñ−j |+ 1 ≤ rj(P ) ≤ p− |Ñ+

j |
}
≥ 1− α

and

lim inf
n→∞

inf
P∈P

P

⋂
j∈J

{
|Ñ−j |+ 1 ≤ rj(P ) ≤ p− |Ñ+

j |
} ≥ 1− α .

Therefore,

R̃n,j ≡
{
|Ñ−j |+ 1, . . . , p− |Ñ+

j |
}

(35)

is a confidence set that covers the rank rj(P ) with limiting probability at least 1− α and

R̃joint
n ≡

∏
j∈J

{
|Ñ−j |+ 1, . . . , p− |Ñ+

j |
}

(36)

is a confidence set that covers the vector of ranks r(P ) with limiting probability at least 1− α.

To formally compare the approach proposed in the main text with the one of this section, we focus on the case in which

the estimators of the features θ(Pj) are independent and normally distributed, i.e.,
θ̂1
...

θ̂p

 ∼ N (θ(P ), diag

(
σ2(P1)

n1
, . . . ,

σ2(Pp)

np

))
, (37)

where σ2(Pj) > 0, j ∈ J are known. In this case, we obtain finite-sample comparisons between the two methods, but the results

easily extend to asymptotic (as n→∞) comparisons and to the case of unknown variances.

We consider the confidence set for the entire ranking, R̃joint
n , based on C̃n(1− α), where C̃n(1− α) =

∏
j∈J C̃n(1− α, j) is

such that

C̃n(1− α, j) =

[
θ̂j ±

σ(Pj)
√
nj

q̃1−α

]
, j ∈ J , (38)

and q̃1−α is either the

1 + (1− α)1/p

2
− quantile of the N(0, 1) distribution (39)

or the (
1−

α

2p

)
− quantile of the N(0, 1) distribution . (40)

The quantile in (39) imposes independence of the estimators and (40) is the quantile used in the Bonferroni method. We

compare R̃joint
n to our confidence set Rjoint

n based on Cn(1 − α, Sall) with Cn(1 − α, Sall) =
∏

(j,k)∈Sall
Cn(1 − α, Sall, (j, k))

such that

Cn(1− α, Sall, (j, k)) =

[
θ̂j − θ̂k ±

√
σ2(Pj)

nj
+
σ2(Pk)

nk
q1−α

]
, (41)
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where q1−α is the

(1− α)− quantile of max
(j,k)∈Sall

|θ̂j − θ̂k −∆j,k(P )|√
σ2(Pj)

nj
+
σ2(Pk)
nk

.

This quantile is similar to L−1
symm,n(1 − α, Sall, P ) as defined in (8) except that the estimated variances in (8) are replaced by

the population variances.

For the following lemma, let R(P ) ≡
∏
j∈J{rj(P ), . . . , r̄j(P )}, where rj(P ) and r̄j(P ) are the smallest and largest ranks

defined in Remark 3.4.

Lemma B.1. Suppose (37) holds. Let R̃joint
n be based on C̃n(1−α) =

∏
j∈J C̃n(1−α, j) satisfying (38) with q̃1−α as defined

in either (39) or (40). Let Rjoint
n be based on Cn(1 − α, Sall) =

∏
(j,k)∈Sall

Cn(1 − α, Sall, (j, k)) satisfying (41). Then the

following statements hold:

(i) For any α ∈ (0, 1), R̃joint
n satisfies P (r(P ) ∈ R̃joint

n ) ≥ P (R(P ) ⊆ R̃joint
n ) > 1− α.

(ii) For any α ∈ (0, 1), Rjoint
n satisfies P (r(P ) ∈ Rjoint

n ) ≥ P (R(P ) ⊆ Rjoint
n ) ≥ 1−α, where the second inequality is satisfied

with equality when all elements of θ(P ) are equal.

(iii) If p = 2, then Rjoint
n is a subset of R̃joint

n , and a strict subset with positive probability.

(iv) If σ(Pj) = σ(Pk) for all j, k ∈ J and nj = nk for all j, k ∈ J, then Rjoint
n is a subset of R̃joint

n , and a strict subset with

positive probability.

This lemma shows, first, that the alternative confidence set R̃joint
n covers the ranking r(P ) and the set of ranks R(P ) each

with probability strictly larger than 1− α, independently of the configuration of features θ(P1), . . . , θ(Pp). On the other hand,

our proposed confidence set for the set of ranks achieves coverage probability equal to 1−α in the case when all features θ(Pj)

are equal. In addition, there are two special cases in which our approach leads to bounds on the ranks that are not wider and

strictly narrower than the alternatives proposed in this section: when there are only two populations or when the variances and

sample sizes of all populations are equal.

In the case when p > 2, not all variances, and not all sample sizes are equal, then our confidence set and the alternative

proposed in this section cover the ranking with probability strictly larger than 1−α. In this case, we do not know whether our

method leads to smaller confidence sets. However, we can compare the endpoints of the two confidence sets as follows. In the

proof of the lemma, we show that

P
{
r(P ) ∈ R̃joint

n

}
≥ P

{
θ(Pj)− θ(Pk) ∈

[
θ̂j − θ̂k ± (τj + τk)q̃1−α

]
for all (j, k) ∈ Sall

}
> 1− α ,

where τj ≡ σ(Pj)/
√
nj . Similarly, our confidence set satisfies

P
{
r(P ) ∈ Rjoint

n

}
≥ P

{
θ(Pj)− θ(Pk) ∈

[
θ̂j − θ̂k ±

√
τ2
j + τ2

kq1−α
]

for all (j, k) ∈ Sall

}
≥ 1− α .

Comparing the two expressions, it is clear that we cannot have

(τj + τk)q̃1−α <
√
τ2
j + τ2

kq1−α

for all (j, k) ∈ Sall. In particular, if there is one pair (j, k) such that this strict inequality holds, then there must be at least one

other pair (j′, k′) such that the inequality is reversed:

(τj′ + τk′ )q̃1−α >
√
τ2
j′ + τ2

k′q1−α .

Therefore, the confidence set R̃joint
n cannot be contained in ours. Whether our confidence set is contained in R̃joint

n in general,

we leave open for future research.

Remark B.1. Consider the case in which θ(P ) is a vector of expectations and θ̂ the corresponding vector of sample means.

Then, the two confidence sets R̃joint
n in Lemma B.1, one using the critical value in (39) and the other the Bonferroni critical value

in (40), coincide with the two proposals in Klein et al. (2020). The simulations in Section E confirm the results in Lemma B.1

by showing that our confidence sets for ranks are either of similar or strictly smaller size than those by Klein et al. (2020).
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Appendix C Comparison With Gupta (1956)

Gupta (1956) proposes a confidence set that contains the identity of the population with the largest mean, based on observations

from independent, normally distributed populations with equal and known variances:

X̄n ∼ N
(
µ(P ),

σ2(P )

n

)
, (42)

where σ2(P ) > 0 is known, X̄n ≡ (X̄n,1, . . . , X̄n,p)′, and µ(P ) ≡ (µ(P1), . . . , µ(Pp))′. His confidence set JGupta
n contains all

j ∈ J such that

max
k∈J

X̄n,k − X̄n,j ≤ d
σ(P )
√
n

,

where d solves ∫
Φ(u+ d)p−1φ(u)du = 1− α , (43)

Φ and φ denote the cdf and pdf of the standard normal distribution, and α ∈ (0, 1/2). Let π be an arbitrary permutation of J

such that µ(Pπ(1)) ≥ µ(Pπ(2)) ≥ . . . ≥ µ(Pπ(p)). Gupta shows that the best population, π(1), is contained in his confidence set

with probability no less than 1− α:

P
{
π(1) ∈ JGupta

n

}
= P

{
max
k∈J

X̄n,k − X̄n,π(1) ≤ d
σ(P )
√
n

}
=

∫ p∏
k=2

Φπ(k)

(
x+ d

σ(P )
√
n

)
φπ(1)(x)dx

≥
∫

Φπ(1)

(
x+ d

σ(P )
√
n

)p−1

φπ(1)(x)dx

=

∫
Φ (u+ d)p−1 φ(u)du

where Φj and φj denote the cdf and pdf of the normal distribution with mean µ(Pj) and variance σ2(P )/n. The first equality

uses normality and independence of the means. The inequality above follows because, since the populations have equal variances

their distributions are stochastically ordered by their means. The final equality is due to a change of variables. Since d is chosen

so that the last expression is equal to 1−α, the coverage probability P{π(1) ∈ JGupta
n } is no smaller than 1−α. The inequality

becomes an equality when all means are equal to each other. In this sense, Gupta’s approach selects the critical value from the

least-favorable configuration of means.

The requirement of covering π(1) with probability no less than a prespecified level is not the same as covering the set

of 1-best populations, J1−best
0 , as defined in Section 3.4. In fact, Gupta’s confidence set may cover J1−best

0 with probability

strictly less than 1−α when the largest mean µ(Pπ(1)) is tied with at least one other mean. To see this consider the case p = 2

and suppose µ(P1) = µ(P2). Then, by the distributional assumption (42), we have

P
{
J1−best

0 ⊆ JGupta
n

}
= P

{
{1, 2} ⊆ JGupta

n

}
= P

{
max
j∈J

max
k∈J
{X̄n,k − X̄n,j} ≤ d

σ(P )
√
n

}
= P

{
max
k∈J

X̄n,k − µ(Pk)

σ(P )/
√
n
−min
j∈J

X̄n,j − µ(Pj)

σ(P )/
√
n
≤ d
}

= 2

∫
[Φ(u+ d)− Φ(u)]φ(u)du

The last equality uses the expression of the distribution of the range statistic for two i.i.d. standard normal random variables.

Since, for all d > 0,

2

∫
[Φ(u+ d)− Φ(u)]φ(u)du =

∫
Φ(u+ d)φ(u)du+

[∫
Φ(u+ d)φ(u)du− 1

]
<

∫
Φ (u+ d)φ(u)du

and since α < 1/2 implies that the value of d that solves (43) for p = 2 must be positive, we have

P
{
J1−best

0 ⊆ JGupta
n

}
< 1− α .
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Figure 8: Contour plot of CPU (p, t) with 1− α = 0.95.

Consider now the case when p > 2 and t of the means are tied as the best (2 ≤ t ≤ p), say

µ(P1) = . . . = µ(Pt) > µ(Pt+1) ≥ . . . ≥ µ(Pp) .

Then

P
{
J1−best

0 ⊆ JGupta
n

}
= P

{
{1, . . . , t} ⊆ JGupta

n

}
= P

{
max

j∈{1,...,t}
max
k∈J
{X̄n,k − X̄n,j} ≤ d

σ(P )
√
n

}
≤ P

{
max

k∈{1,...,t}

X̄n,k − µ(Pk)

σ(P )/
√
n
− min
j∈{1,...,t}

X̄n,j − µ(Pj)

σ(P )/
√
n
≤ d
}

= t

∫
[Φ(u+ d)− Φ(u)]t−1 φ(u)du︸ ︷︷ ︸

≡C̃PU (d,t)

Denote by d(p) the solution to (43), i.e. Gupta’s choice of critical value for a given number of populations p. Figure 8 plots the

contours of CPU (p, t) ≡ C̃P
U

(d(p), t) (with 1− α = 0.95) as a function of the number of populations p and the number of ties

at the largest mean t. This is an upper bound on the probability with which Gupta’s confidence set covers the set of 1-best

populations, J1−best
0 . Only in the lower right corner of the plot, i.e. for large p and small t, is the upper bound of the coverage

probability larger than the desired level 0.95, otherwise it is strictly smaller.

Therefore, for most (t, p) combinations, Gupta’s confidence set does not cover J1−best
0 with the desired probability whereas

our proposals in Section 3.4 asymptotically cover Jτ−best
0 with probability no less than 1− α for τ = 1, but also for any other

τ > 1.
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Appendix D Proofs

D.1 Proofs of Results in the Main Text

Proof of Theorem 3.1. Suppose the event ∆Sj (P ) ∈ Cn(1−α, Sj) holds. Then, any k 6= j such that Cn(1−α, Sj , (j, k)) ⊆ R−

satisfies θ(Pj) < θ(Pk). Therefore, the rank rj(P ) is strictly larger than the number of k 6= j for which Cn(1−α, Sj , (j, k)) ⊆ R−.

Similarly, any k 6= j such that Cn(1− α, Sj , (j, k)) ⊆ R+ satisfies θ(Pj) > θ(Pk). Therefore, the rank rj(P ) is bounded above

by the number of elements in J minus the number of k 6= j for which Cn(1 − α, Sj , (j, k)) ⊆ R+. This establishes the first

inequality of the theorem and the coverage statement follows immediately.

Proof of Theorem 3.2. Suppose S+
j (P ) ∩ Rej−j = ∅ and S−j (P ) ∩ Rej+j = ∅. Then, θ(Pj) < θ(Pk) for (j, k) ∈ Rej−j and

θ(Pj) > θ(Pk) for (j, k) ∈ Rej+j , so the bounds on the rank follow just as in the proof of Theorem 3.1. This establishes the first

inequality of the theorem and the coverage statement follows immediately.

Proof of Theorem 3.3. Analogous to the proof of Theorem 3.1.

Proof of Theorem 3.4. Analogous to the proof of Theorem 3.2.

Proof of Theorem 3.5. Let Π ≡ {π permutation of J : θ(Pπ(1)) ≥ . . . ≥ θ(Pπ(p))} be the set of permutations of J that preserve

the ranking of the elements of θ(P ). Notice that rj(P ) = minπ∈Π π
−1(j) and denote by π∗j ∈ Π a permutation that achieves the

minimum, i.e. (π∗j )−1(j) = minπ∈Π π
−1(j). The permutation π∗j may vary with j, but two different permutations π∗j and π∗k

can differ only on elements for which the corresponding elements in θ(P ) are equal (i.e. θ(Pπ∗j (t)) = θ(Pπ∗
k

(t)) for all j, k, t ∈ J).

Pick an arbitrary π∗ ∈ {π∗1 , . . . , π∗p} and define

J∗ ≡ {π∗(1), . . . , π∗(τ − 1)} .

Then:

Hj ⇔ rj(P ) ≤ τ

⇔ (π∗j )−1(j) ≤ τ

⇔ θ(Pj) ≥ θ(Pπ∗j (τ))

⇔ θ(Pj) ≥ θ(Pπ∗(τ))

⇔ θ(Pj) ≥ θ(Pk) ∀k ∈ J \ J∗

⇔ max
k∈J\J∗

{θ(Pk)− θ(Pj)} ≤ 0 (44)

The statement of the theorem obviously holds when all hypotheses are false. Therefore, assume that at least one of the

hypotheses is true. Let ŝ be the smallest integer such that there is a false rejection at Step ŝ, i.e. there is a ĵ ∈ Iŝ ∩ Jτ−best
0 (P )

such that Tn,ĵ > ĉn(1− α, Iŝ). By definition, Jτ−best
0 (P ) ⊆ Iŝ and therefore ĉn(1− α, Jτ−best

0 (P )) ≤ ĉn(1− α, Iŝ). Thus,

max
j∈Jτ−best

0 (P )

Tn,j ≥ Tn,ĵ > ĉn(1− α, Jτ−best
0 (P ))

and

FWERP ≡ P
{

reject at least one Hj , j ∈ Jτ−best
0 (P )

}
≤ P

{
max

j∈Jτ−best
0 (P )

Tn,j > ĉn(1− α, Jτ−best
0 (P ))

}
. (45)
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To compute this probability consider:

P

{
max

j∈Jτ−best
0 (P )

Tn,j ≤ x
}

= P

{
max

j∈Jτ−best
0 (P )

min
K∈K

max
k∈J\K

{
θ̂k − θ̂j

}
≤ x

}

≥ P
{

max
j∈Jτ−best

0 (P )

max
k∈J\J∗

{
θ̂k − θ̂j

}
≤ x

}

≥ P
{

max
j∈Jτ−best

0 (P )

max
k∈J\J∗

{
θ̂k − θ̂j −∆k,j(P )

}
≤ x

}

≥ min
K∈K

P

{
max

j∈Jτ−best
0 (P )

max
k∈J\K

{
θ̂k − θ̂j −∆k,j(P )

}
≤ x

}

= min
K∈K

P
{
T
n,Jτ−best

0 (P ),K
≤ x

}
(46)

where the second inequality follows from (44).

Then there exists a set K∗ = K∗n(P ) ∈ K such that, by combining (45), (46), and the definition of ĉn(1− α, Jτ−best
0 (P )),

we have

FWERP ≤ 1− min
K∈K

P
{
T
n,Jτ−best

0 (P ),K
≤ ĉn(1− α, Jτ−best

0 (P ))
}

= 1− P
{
T
n,Jτ−best

0 (P ),K∗
≤ max
K∈K

M−1
n (1− α, Jτ−best

0 (P ),K, P̂n)

}
≤ 1− P

{
T
n,Jτ−best

0 (P ),K∗
≤M−1

n (1− α, Jτ−best
0 (P ),K∗, P̂n)

}
.

Therefore,

lim sup
n→∞

sup
P∈P

FWERP ≤ 1− lim inf
n→∞

inf
P∈P

P
{
T
n,Jτ−best

0 (P ),K∗
≤M−1

n (1− α, Jτ−best
0 (P ),K∗, P̂n)

}
≤ 1− lim inf

n→∞
inf
P∈P

min
K∈K

P
{
T
n,Jτ−best

0 (P ),K
≤M−1

n (1− α, Jτ−best
0 (P ),K, P̂n)

}
≤ α ,

where the last inequality follows from (30) and the fact that K is a finite set. The desired result now follows because

lim inf
n→∞

inf
P∈P

P{Jτ−best
0 (P ) ⊆ Jτ−best

n } = 1− lim sup
n→∞

sup
P∈P

FWERP ≥ 1− α.

D.2 Proofs of Results in the Appendix

Proof of Lemma B.1. Since the quantile in (39) is smaller than that in (40), we show the results for (39) and the analogous

results for (40) then follow immediately. Define τj ≡ σ(Pj)/
√
nj .

Consider the claim (i). Suppose ∆j,k(P ) ∈ C̃n(1 − α, (j, k)) ≡ [θ̂j − θ̂k ± (τj + τk)q̃1−α] for all (j, k) ∈ Sall. Then, for

all k ∈ Ñ−j , the interval C̃n(1 − α, (j, k)) lies entirely below zero, so that θ(Pj) < θ(Pk). Similarly, for all k ∈ Ñ+
j , we have

θ(Pj) > θ(Pk). Therefore, the smallest possible value of the rank of j cannot be smaller than the number of elements in Ñ−j ,

i.e. rj(P ) ≥ |Ñ−j |, and the largest value of the rank of j cannot be larger than p minus the number of elements in Ñ+
j , i.e.

r̄j(P ) ≤ p− |Ñ+
j |. Therefore,

P
{
R(P ) ⊆ R̃joint

n

}
≥ P

{
∆j,k(P ) ∈ C̃n(1− α, (j, k)) for all (j, k) ∈ Sall

}
.
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Letting αj,k ≡ τj/(τj + τk), we have

P
{

∆j,k(P ) ∈ C̃n(1− α, (j, k)) for all (j, k) ∈ Sall

}
= P

{
θ(Pj)− θ(Pk) ∈

[
θ̂j − θ̂k ± (τj + τk)q̃1−α

]
for all (j, k) ∈ Sall

}
= P

{
max

(j,k)∈Sall

∣∣∣∣∣ θ̂j − θ(Pj)τj + τk
−
θ̂k − θ(Pk)

τj + τk

∣∣∣∣∣ ≤ q̃1−α
}

= P

{
max

(j,k)∈Sall

∣∣∣∣∣αj,k θ̂j − θ(Pj)τj
− (1− αj,k)

θ̂k − θ(Pk)

τk

∣∣∣∣∣ ≤ q̃1−α
}

> P

{
max

(j,k)∈Sall

max

{∣∣∣∣∣ θ̂j − θ(Pj)τj

∣∣∣∣∣ ,
∣∣∣∣∣ θ̂k − θ(Pk)

τk

∣∣∣∣∣
}
≤ q̃1−α

}

= P

{
max
j∈J

∣∣∣∣∣ θ̂j − θ(Pj)τj

∣∣∣∣∣ ≤ q̃1−α
}

= 1− α ,

The strict inequality follows from the fact that, for any numbers ω ∈ (0, 1) and A 6= −B, we have |ωA−(1−ω)B| < max{|A|, |B|}.
This inequality is applicable above because αj,k ∈ (0, 1) and P{(θ̂j − θ(Pj))/τj = (θ̂k − θ(Pk))/τk} = 0 for all (j, k) ∈ Sall.

Therefore, the desired claim in (i) follows.

Part (ii) follows from analogous arguments to those in the proof of Theorem 3.3 and in Remark 3.4.

Consider part (iii). Notice that, for p = 2, q1−α is the (1 − α/2)-quantile of the standard normal distribution. Suppose

there is a k ∈ J such that C̃n(1− α, k) lies entirely above C̃n(1− α, j), i.e.,

θ̂k − τk q̃1−α > θ̂j + τj q̃1−α

or, equivalently,

θ̂j − θ̂k + (τj + τk)q̃1−α < 0 .

This implies that Cn(1− α, Sall, (j, k)) lies entirely below zero if τj + τk >
√
τ2
j + τ2

k and q̃1−α > q1−α. The former condition

obviously holds because τj > 0 for all j ∈ J . The latter follows because, since α ∈ (0, 1),

1 +
√

1− α
2

> 1−
α

2
.

Therefore, we have shown that |Ñ−j | ≤ |N
−
j | for all j ∈ J . Similarly, we can show that |Ñ+

j | ≤ |N
+
j | for all j ∈ J . For

|Ñ−j | < |N
−
j | to occur for some j ∈ J , there must exist a k ∈ J such that

θ̂j − θ̂k +
√
τ2
j + τ2

kq1−α < 0 < θ̂j − θ̂k + (τj + τk)q̃1−α

or, equivalently,

θ̂k − θ̂j ∈
(√

τ2
j + τ2

kq1−α, (τj + τk)q̃1−α
)
.

This event occurs with positive probability because the interval has positive length, as shown above, and the difference in the

estimators is normally distributed. Similarly, we can show that |Ñ+
j | < |N

+
j | for some j ∈ J occurs with positive probability,

so the desired claim follows.

Finally, consider part (iv). Suppose there is a k ∈ J such that C̃n(1− α, k) lies entirely above C̃n(1− α, j), i.e.,

θ̂j − θ̂k +
2σ(P )
√
n

q̃1−α < 0 .

Notice that q1−α is the (1− α)-quantile from the distribution of max(j,k)∈Sall

1√
2
|Zj −Zk|, where Z1, . . . , Zp are i.i.d. N(0, 1)

random variables. This quantile satisfies
√

2q1−α < 2q̃1−α for all α ∈ (0, 1) so that

θ̂j − θ̂k +

√
2σ(P )
√
n

q1−α < θ̂j − θ̂k +
2σ(P )
√
n

q̃1−α < 0 ,

which means that Cn(1− α, Sall, (j, k)) lies entirely below zero. Therefore, |Ñ−j | ≤ |N
−
j | for all j ∈ J . Similarly, we can show

that |Ñ+
j | ≤ |N

+
j | for all j ∈ J . The remainder of the proof is then similar to that of part (iii).
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Appendix E Examining the Finite-Sample Performance through

Simulations

In this section, we examine the finite-sample performance of several procedures for constructing confidence

sets for the rank of a single population, for the ranks of all populations, and for the set of τ -best populations

with a simulation study.

E.1 Marginal Confidence Sets for the Rank of a Single Population

Data generating process

The data generating process is calibrated to the data from the empirical application in Section 4.2 in which

we rank neighborhoods in the U.S. by measures of intergenerational mobility. Let θ̂C ≡ (θ̂C,1, . . . , θ̂C,p) and

ŝC ≡ (ŝC,1, . . . , ŝC,p) denote the “correlational” estimates of mobility and their standard errors for the p

most populous commuting zones (CZs) from Chetty et al. (2018); these are the estimates of ȳc25 introduced

in Section 4.2. Similarly, denote by θ̂M and ŝM the “movers” estimates of mobility and their standard errors

for the p most populous CZs from Chetty and Hendren (2018); these are the estimates of µc25 introduced in

Section 4.2. Let n̂ ≡ (n̂1, . . . , n̂p) be the vector with j-th element equal to the number of individuals either

moving from or to CZ j in the movers dataset. This is our guess for the number of observations that was

used in estimation of the movers estimate for CZ j.

For each CZ j = 1, . . . , p, we generate an i.i.d. sample Xj,1, . . . , Xj,nj with sample size nj ≡ κn̂j and

Xj,i ∼ N(θj , σ
2
j ), independently across j,

where, for t ∈ {C,M} (i.e. depending on which of the two datasets we base the simulations on),

θj ≡

{
θ̂t,1, j = 1

θ̂t,1 + δ
∑j−1
k=1(θ̂t,k+1 − θ̂t,k), j > 1

(47)

and σ2
j ≡ n̂j ŝ2t,j . There are two main parameters that govern the design, δ and κ.

The parameter δ governs how close the mobility measures θj are to each other. When δ = 1, then they

are equal to those from the data. For smaller (larger) values, the measures are closer to (further away from)

each other than in the data and, in the extreme case of δ = 0, they are all identical.

The parameter κ governs the sizes of the samples drawn for each CZ. κ = 1 corresponds to the case in

which the CZ-specific sample sizes are the same as in the data. Smaller (larger) κ means we draw a smaller

(larger) sample than in the data or, equivalently, the standard errors for the resulting mobility estimates are

larger (smaller).

Figures 9 and 10 show the data generating processes (more precisely, the configuration of mobility mea-

sures and standard errors) for different parameter values of κ and δ. In each figure, the panel in the center

depicts the data generating process calibrated to the data. The panels to its left and right show how chang-

ing δ affects the slope of the vector of mobility measures. The panels above and below show how changing
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Figure 9: Correlational simulation design: for j = 1, . . . , 50, the panels show θj (solid lines) and θj±2σj/
√
nj

(dashed lines), varying κ and δ. The center panel denoted by “DATA” shows the design calibrated to the
data (κ = δ = 1).

κ changes the standard errors of the mobility estimates. All simulations are based on 2, 000 Monte Carlo

samples and nominal coverage of 95%.

Simulation exercises

In this subsection, we consider inference on a single rank, namely inference on the CZ j with the largest

mobility estimate θ̂t,j among the p most populous CZs.

We consider different procedures for constructing the confidence sets. Critical values for the different

methods are based on the parametric bootstrap so as to mimic the empirical analysis in Section 4.2, in which

we only observe point estimates and standard errors so a nonparametric bootstrap cannot be implemented.16

16Simulation results for the nonparametric bootstrap, which are not reported here, are very similar to the results for the
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Figure 10: Movers simulation design: for j = 1, . . . , 50, the panels show θj (solid lines) and θj ± 2σj/
√
nj

(dashed lines), varying κ and δ. The center panel denoted by “DATA” shows the design calibrated to the
data (κ = δ = 1).

Specifically, for a given Monte Carlo sample Xj,1, . . . , Xj,nj , we compute the sample average θ̂j , the sample

variance σ̂2
j , the standard error ŝej ≡ σ̂j/

√
nj , and ŝe2j,k ≡ ŝe2j + ŝe2k. Then, we generate 1, 000 draws of

normal random vectors Z ≡ (Z1, . . . , Zp)
′ ∼ N(0,diag(ŝe21, . . . , ŝe

2
p)). We compare the following methods,

setting S = Sj :

“DM”: the simple construction in (13), based on symmetric confidence sets for the differences in means as in

(11), where L−1symm,n(1−α, S, P̂n) is the empirical (1−α)-quantile of the 1, 000 draws of max(j,k)∈S |Zj−
Zk|/ŝej,k.

“DM.step”: the stepwise constructions (19) computed through Algorithm 3.1, based on confidence sets

for the differences in means as in (9), where, in the sth step, L−1lower,n(1 − α, Is, P̂n) is the empirical

parametric bootstrap.
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Figure 11: Marginal confidence set for the rank of a single CZ: relative length for the correlational design

(1− α)-quantile of the 1, 000 draws of max(j,k)∈Is(Zj − Zk)/ŝej,k.

“M”: the alternative confidence set described in Appendix B, based on symmetric confidence sets for the

means as in (38), where q̃1−α is the empirical (1−α)-quantile of the 1, 000 draws of maxj∈J |Zj |/ŝej .17

Results

Table 5 shows coverage frequencies, where coverage is computed as in Remark 3.4, i.e. of the set of ranks.

Figures 11–12 plot the “relative” length of the marginal confidence sets, which is computed as the length of

the confidence set averaged over the Monte Carlo samples and divided by the number of CZs p. For example,

a relative length equal to one (or 0.4) means that all (or 40% of the) CZs are included in the confidence set.

17Using q̃1−α as defined in (39) or (40) yields almost identical results, but we choose to use bootstrap quantiles here to make
the method more similar to our proposals “DM” and “DM.step”, which also use bootstrap quantiles.
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Figure 12: Marginal confidence set for the rank of a single CZ: relative length for the movers design

We obtain five insights from the simulation results for inference on a single rank. First, Table 5 shows

that all methods control the coverage frequency at the desired nominal level for small and large sample sizes,

regardless of whether mobility measures are well separated (δ large), nearly tied (δ ≈ 0), or tied (δ = 0),

and regardless of whether there are few or many CZs to be ranked (p small or large). The only instances of

a small amount of undercoverage occur when the mobility measures are all equal (δ = 0) and, at the same

time, either the sample size is small or the number of CZs is large. For values of δ that are sufficiently large,

the coverage frequencies of all methods are close to one. One may be concerned that this phenomenon stems

from a lack of power of the procedures. We emphasize, however, that these situations arise precisely when

the ranking is most informative. Large values of δ imply that the mobility measures are well separated and,

due to the discreteness of the ranks, the ranking therefore has essentially no uncertainty. In such scenarios,

any “reasonable” confidence set should cover the true ranking with probability (close to) one. In other

situations when there is more uncertainty in the ranking, either because standard errors of the mobility

estimates are large (as in the movers design) or because the mobility measures are not well-separated (small
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δ), our methods achieves coverage closer to the nominal level.

Second, the coverage frequency of “M” is approximately equal to one in all scenarios whereas our methods

“DM” and “DM.step” tend to have coverage frequency closer to the desired level. In consequence, our

methods tend to lead to confidence sets for the ranks that are not larger than those of “M” and substantially

smaller in many scenarios. For instance, Figure 12 with p = 25 and κ = 10 shows that the confidence set of

“M” maybe almost twice as large as those of “DM” and “DM.step”. Improvements in the size of confidence

sets by using the stepwise method (“DM.step”) instead of the single-step method (“DM”) are small, but

in Appendix E.4 we provide a different simulation design in which the stepwise method leads to significant

reductions of length.

Third, Figures 11 and 12 show that all methods produce confidence sets that decrease in size as the

mobility measures become more separated from each other (δ increases). When δ = 0, then all CZs have

equal mobility measures and the confidence sets for the rank of a single CZ include all CZs on most Monte

Carlo samples, i.e. relative length is close to one. This is expected because, in this case, all CZs are tied at

rank equal to one. As δ increases the mobility measure of the CZ of interest becomes well separated from

all other CZs. The length of the confidence set decreases towards 1/p and the coverage frequency increases

towards 1. Provided the sample size is not too small, this behavior is a consequence of the confidence sets

for the differences being consistent (see Remark 3.3).

Fourth, comparing left and right columns of Figures 11 and 12 shows that, as the sample size increases

and as long as there are no ties, the length of the confidence sets decreases and the coverage frequency

increases. This behavior is a consequence of the fact that a large sample size leads to small variances of

the estimated mobility measures so that, by the consistency of the confidence sets for the differences, true

differences in mobility measures are easier to detect (see Remark 3.3).

Finally, the differences between the correlational and movers designs have substantial impact on the

length of the confidence sets. Consider the second panels in the top rows of Figures 11 and 12. The red

vertical lines at δ = 1 mark the data-generating process that is calibrated to the data. In the correlational

design, our confidence sets “DM” and “DM.step” are relatively small (both containing on average 6% of the

50 CZs) whereas in the movers design the confidence sets are very large (containing on average more than

70% of the 50 CZs, respectively). This finding is not surprising because, in the movers design, standard errors

are much larger and the mobility measures less well-separated than in the correlational design (compare the

middle panels in Figures 9 and 10). To illustrate the magnitude of the statistical noise in the movers design

notice that even a 10-fold increase in the sample size (κ = 10) and its implied
√

10 ≈ 3.16-fold decrease in

the standard errors reduces the size of the confidence sets only to about 16% (“DM”) and 14% (“DM.step”)

of the 50 CZs (i.e. 8 and 7 of the 50 CZs). In contrast, in the correlational design, the same increase in

sample size reduces the size of both confidence sets from about 6% to 4% of the 50 CZs (i.e. 2 of the 50

CZs). Therefore, even after a 10-fold increase in the sample size, there still is considerable uncertainty in

the rank in the movers design whereas, in the correlational design, the confidence sets for the rank are very

informative.
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Figure 13: Joint confidence sets for the ranks of all CZs: relative length for the correlational design

E.2 Joint Confidence Sets for the Ranks of All Populations

The simulation design is the same as described in Appendix E.1. The methods analyzed are also the same

as described in Appendix E.1, except that “DM” is now based on (23) rather than (13) and “DM.step” is

now based on (25) computed through Algorithm 3.2 rather than (19) computed through Algorithm 3.1.

Table 6 and Figures 13–14 are the counterparts of Table 5 and Figures 11–12. The plotted relative length

of the simultaneous confidence sets is computed as the average length across CZs, averaged across Monte

Carlo samples, and divided by p. The results are qualitatively the same as those for the rank of a single CZ.

One additional insight is that the length of the simultaneous confidence sets for the ranks of all CZs shrinks

more slowly with the sample size and the degree of separation between the mobility measures, δ.
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Figure 14: Joint confidence sets for the ranks of all CZs: relative length for the movers design

E.3 Confidence Sets for the τ-Best Populations

The simulation design is the same as described in Appendix E.1 with one modification: instead of (47), θj

is now defined so that the distance between the two top-ranked CZs and the remaining ones can be varied

by the parameter δ. Specifically,

θj ≡


θ̂t,j , j = 1, 2

θ̂t,3 + (1− δ)
(
θ̂t,2 − θ̂t,3

)
, j = 3

θ̂t,3 + δ
∑j−1
k=3(θ̂t,k+1 − θ̂t,k) + (1− δ)

(
θ̂t,2 − θ̂t,3

)
, j > 3

.

When δ = 1, then as in Appendix E.1 θj is equal to the mobility estimate from the data. When δ = 0, then

θ2 = . . . = θp, which means the two top-ranked CZs are not separated from the remaining CZs and the set

of τ -best CZs contains all CZs. Values of δ between 0 and 1 correspond to cases in which the top-two ranked

CZs are distinct from the remaining CZs, but not as well separated as in the data. Similarly, a value of δ
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larger than 1 corresponds to a case in which the separation is larger than in the data.

We compare the following methods:

“DM”: the projection confidence set in (27), based on confidence sets for the differences in means as in (10),

where L−1upper,n(1− α, S, P̂n) is the empirical (1− α)-quantile of the 1, 000 draws of max(j,k)∈Sall
(Zk −

Zj)/ŝek,j .

“DM.step”: the projection confidence set “DM” except that stepwise improvements as in Remark 3.6 are

applied.

“T”: the test inversion procedure from Section 3.4, using the test statistic in (28), where the critical value

ĉn(1 − α, I) is the maximum (over K ∈ K) of the empirical (1 − α)-quantile of the 1, 000 draws of

maxj∈J maxk∈J\K{Zk − Zj}/ŝek,j .

“M”: the projection confidence set in (27), based on symmetric confidence sets for the means as in “M”

above.

Table 7 and Figures 15–16 are the counterparts of Table 5 and Figures 11–12. First, Table 7 shows that

all methods control the coverage frequency at the desired nominal level for small and large sample sizes,

regardless of whether the mobility measures of the top-two CZs are well-separated from the remaining ones,

and regardless of whether there are few or many CZs to be ranked.

For both the correlational and the movers design, all methods’ coverage frequencies are close to one for

most parameter combinations except when δ = 0. In the correlational design, coverage is actually close to

the nominal level when δ = 0 and the sample size is large. However, unlike for inference on ranks, coverage

does not necessarily increase monotonically as the top-two become more separated (δ grows). Simulations

further below show that the coverage frequency may be closest to the nominal level at a strictly positive

value of δ.

Second, the coverage frequency of “M” is approximately equal to one in all scenarios whereas our methods

“T”, “DM” and “DM.step” tend to have coverage frequency closer to the nominal level at least when δ = 0.

In consequence, our methods tend to lead to confidence sets for the 2-best CZs that are not larger than those

of “M” and strictly smaller in some scenarios. While the differences are small in the correlational design, the

methods “T”, “DM” and “DM.step” may lead to significantly shorter confidence sets in the movers design.

In an alternative simulation design further below, we show that the differences between our proposals (“T”,

“DM”, “DM.step”) and “M” can be much more substantial.

Third, as the two top-ranked CZs are more separated from the remaining ones (δ increases), the size

of the confidence sets decreases. Comparing the bottom rows of Figures 15 and 16, we see that, in the

correlational design, the top-two CZs can be distinguished from the third-ranked CZ even for small values

of δ whereas, in the movers design, all three CZs are in the confidence set for the 2-best regardless of the

value of δ.

Fourth, comparing the left and the right columns in Figures 15 and 16 shows that an increase in sample

size leads to smaller confidence sets, as expected.

To highlight some differences in performance across the four methods that could not be seen in the

simulation design calibrated to the data, we now present additional simulation results from a different
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Figure 15: Confidence sets for the τ -best CZs: relative length for the correlational design

design. For each population j = 1, . . . , p, we generate an i.i.d. sample Xj,1, . . . , Xj,n from N(θj , 1) so that all

samples across populations are mutually independent. The parameter θ ≡ (θ1, . . . , θp)
′ is defined as follows:

θ1 = δ1

θ2 = θ3 =
δ1
δ2

θ4 = . . . = θp = 0

In all simulation scenarios, the first three populations, j = 1, 2, 3, possess ranks less than or equal to 2

and are thus elements of the set of 2-best populations. All other elements of θ are equal to zero. Suppose

δ2 = 1. Then, the magnitude of δ1 determines how well the top three populations are separated from the

remaining ones. A value of δ2 ≥ 1 allows us to consider data-generating processes in which the populations

at rank equal to two (i.e. θ2, θ3) are separated from that of rank equal to one (i.e. θ1). When δ1 = 0,
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Figure 16: Confidence sets for the τ -best CZs: relative length for the movers design

then all populations are tied with all elements of θ equal to 0. All simulations are based on 1, 000 Monte

Carlo samples and nominal coverage of 95%. The methods we compare are the same as described above, but

in addition we also consider the “naive” procedure that simply picks the two populations with the largest

estimated means.

Table 8 shows the coverage frequencies, where coverage is computed as in the other simulations, i.e. as

in Remark 3.4. Figure 17 shows the length (not the relative length as in the tables above) of the confidence

sets, averaged over the Monte Carlo samples, for p = 10. Several aspects of the simulation results are

similar to those above, so we focus the discussion on differences. First, the “naive” method does not control

the coverage frequency at the desired nominal level. It never covers the set of τ -best populations because,

by definition it only selects two populations even though, in all scenarios, there are at least three τ -best

populations.

Second, the coverage frequency of “M” is approximately equal to one in all scenarios whereas our methods
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Figure 17: Confidence sets for the τ -best: length of the confidence sets for p = 10.

“T”, “DM” and “DM.step” tend to have coverage frequency closer to the nominal level. In consequence,

our methods tend to lead to confidence sets for the 2-best populations that are not larger than those of “M”

and substantially smaller in most scenarios. For instance, the top row of graphs in Figure 17 shows that the

confidence sets of “M” may be up to about 50% larger than those of our proposed methods. The method

“T” generally produces even smaller confidence sets than the projection methods “DM” and “DM.step”,

but the gains are modest. Similarly, the stepwise improvements (“DM.step”) help shorten the confidence

sets relative to “DM”, but the gains are modest. Overall, the three methods “DM”, “DM.step”, and “T”

perform similarly well.

Third, as in the case of inference on a single rank and on all ranks, comparing the top and the bottom
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rows of Figure 17 shows that as the first three populations’ means become better separated from the others

(δ2 decreases or δ1 increases). The lengths of the confidence sets shrink because it is easier to recover the

populations with rank less than or equal to two (exactly those first three populations).

Finally, Table 8 shows that the coverage frequency is not necessarily closest to the nominal level when

all populations are tied (δ1 = 0). For instance, when δ2 = 3 and p = 3, then the coverage frequency of our

procedures is close to one when all populations are tied (δ1 = 0), but takes values near 0.98 when δ1 is large.
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δ1
n δ2 p test 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

100 1 3 naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996
DM.step 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995
T 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995

10 naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM 0.992 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
DM.step 0.991 0.999 0.998 0.998 0.998 0.998 0.998 0.998 0.998
T 0.991 0.998 0.997 0.997 0.997 0.997 0.997 0.997 0.997

50 naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM.step 0.984 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T 0.986 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 3 naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 1.000 0.999 0.999 0.998 0.998 0.998 0.998 0.998 0.998
DM 0.996 0.990 0.980 0.979 0.979 0.979 0.979 0.979 0.979
DM.step 0.995 0.987 0.977 0.974 0.968 0.968 0.968 0.968 0.968
T 0.995 0.985 0.975 0.972 0.974 0.974 0.974 0.974 0.974

10 naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM 0.992 0.998 0.998 0.997 0.997 0.997 0.997 0.997 0.997
DM.step 0.991 0.998 0.998 0.997 0.997 0.997 0.996 0.996 0.996
T 0.991 0.999 0.999 0.997 0.993 0.994 0.994 0.993 0.994

50 naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM.step 0.984 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T 0.986 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.998

200 1 3 naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995
DM.step 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995
T 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995

10 naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM.step 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T 0.985 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999

50 naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM 0.986 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM.step 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T 0.987 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 3 naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 1.000 1.000 1.000 0.999 0.999 0.999 0.999 0.999 0.999
DM 0.995 0.987 0.984 0.984 0.984 0.984 0.984 0.984 0.984
DM.step 0.995 0.986 0.982 0.980 0.980 0.980 0.980 0.980 0.980
T 0.995 0.986 0.982 0.981 0.981 0.981 0.981 0.981 0.981

10 naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM 0.985 0.995 0.996 0.996 0.996 0.996 0.996 0.996 0.996
DM.step 0.985 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995
T 0.985 0.994 0.993 0.992 0.990 0.990 0.990 0.990 0.990

50 naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM 0.986 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DM.step 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T 0.987 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 8: Confidence set for the τ -best populations: coverage. Nominal coverage is 0.95.
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E.4 Single-Step Versus Stepwise Methods

In this section, we show through simulations that the stepwise procedure “DM.step” may provide significant

improvements in length of the confidence set for the rank of a population relative to the single-step method

“DM”.

The simulation design is different from the one in Appendix E.1. For each population j = 1, . . . , p, we

generate an i.i.d. sample Xj,1, . . . , Xj,n from N(θj , 1) so that all samples across populations are mutually

independent. The parameter θ ≡ (θ1, . . . , θp)
′ is defined as follows:

θ1 =
1

2
+ δ

θ2, . . . , θp lie on an equally-spaced grid from
1

2
to 0 with θ2 =

1

2
, θp = 0

The magnitude of δ determines how well the first population, on whose rank we perform inference, is separated

from the remaining ones. All simulations are based on 1, 000 Monte Carlo samples, n = 100, p = 100, and

nominal coverage of 95%. We compare the two methods “DM” and “DM.step” as described in Appendix E.1.

Tables 9 and 10 show the coverage frequency and the length (not relative length as in some previous

tables) of the marginal confidence set for the first population. In these simulations, the populations are

well-separated (except the first two, when when δ = 0) and thus coverage is equal to one. The length of

the confidence sets may differ significantly between the two methods. For instance, for δ = 0.5 the stepwise

procedure leads to a confidence set that is 1− 6.98/8.93 ≈ 22% shorter than that of the single-step method.

δ
n p test 0 0.12 0.25 0.38 0.5 0.62 0.75 0.88 1

100 1 DM 1 1 1 1 1 1 1 1 1
DM.step 1 1 1 1 1 1 1 1 1

Table 9: Marginal confidence set for the rank of the first population: coverage. Nominal coverage is 0.95.

δ
n p test 0 0.12 0.25 0.38 0.5 0.62 0.75 0.88 1

100 1 DM 83.91 66.08 42.94 21.70 8.93 3.00 1.28 1.01 1.00
DM.step 83.04 64.28 40.08 18.82 6.98 2.29 1.15 1.00 1.00

Table 10: Marginal confidence set for the rank of the first population: length.
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E.5 Nonnormal Data

In this section, we explore the performance of the confidence sets for the rank of a single population when

the underlying data are drawn from a nonnormal distribution. The simulation design is the same as the one

in Appendix E.1 apart from two differences: first, the data Xj,i are not drawn from a normal distribution,

but instead from the Sinh-arcsinh distribution by Jones and Pewsey (2009); second, we draw a much smaller

number of observations so that the sample means θ̂j are also nonnormally distributed.

The Sinh-arcsinh family is indexed by four parameters, one for the location, one for the scale, one (denoted

by β) that governs skewness and one (denoted by γ) that governs kurtosis.18 When the skewness parameter

is equal to zero and the kurtosis parameter is equal to one, then the distribution is equal to the normal

distribution with the same location and scale parameters. Therefore, by drawing data from the Sinh-arcsinh

distribution with the same location and scale parameters as in the simulations of Appendix E.1 and varying

the parameters β and γ, we can assess the robustness of the results for smooth departures from the normal

distribution. Figure 18 displays the densities of several members of the Sinh-arcsinh family with location

parameter equal to zero, scale parameter equal to one, and various combinations of the skewness (β) and

kurtosis (γ) parameters. The middle panel in the bottom row is the standard normal density.

As indicated above, in this section, we consider a simulation design that is the same as the one in

Appendix E.1 apart from two differences: first, Xj,i is drawn from the Sinh-arcsinh distribution with location

θj , scale σ2
j , skewness parameter β ∈ {0, 0.5, 1}, and kurtosis parameter γ ∈ {0.5, 1, 2}; second, the number

of draws for CZ j is set to nj = 50κ, which is orders of magnitude smaller than in Appendix E.1. To reduce

the number of results to report we focus on δ = 1, i.e. the case in which the true means θj are equal to the

estimates from the correlational or from the movers dataset of Section 4.2, and p = 25.

Table 11 shows coverage frequencies, where coverage is computed as in Remark 3.4, i.e. of the set of

ranks. Figures 19–20 plot the “relative” length of the marginal confidence sets, which is computed as the

length of the confidence set averaged over the Monte Carlo samples and divided by the number of CZs p.

For example, a relative length equal to one (or 0.4) means that all (or 40% of the) CZs are included in the

confidence set.

Many aspects of the simulation results in this section are similar to those in Appendix E.1. Therefore,

we focus the discussion on differences. All methods control the coverage frequency at the desired nominal

level for all values of the skewness and kurtosis parameters. Since the method “M” has coverage frequency

almost equal to one for all designs, consider our methods “DM” and “DM.step”. For very small sample sizes

(κ = 0.5, i.e. nj = 25), coverage frequencies vary to some extent with β and γ. The largest difference can be

seen in the movers design, fixing β = 1 and increasing γ from 0.5 to 2, which results in a coverage frequency

decreasing from 0.988 to 0.963. Nevertheless, both are above the the desired level of 0.95. For other sample

sizes, the coverage frequencies barely vary with β and γ.

Figures 19–20 show that the lengths of all confidence sets are almost identical across different values of

the skewness and kurtosis parameters.

In conclusion, the analysis of this section suggests that the simulation results from Appendix E.1 are

robust to smooth departures from the normal distribution from which the data are drawn.

18Note, however, that skewness is not equal to β and kurtosis is not equal to γ. See Jones and Pewsey (2009) for details.
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Figure 18: Densities of the Sinh-arcsinh family with location parameter equal to zero, scale parameter equal
to one, and varying values of the skewness (β) and kurtosis (γ) parameters. The middle panel in the bottom
row is the standard normal density.
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correlational design movers design
κ β method γ = 0.5 γ = 1 γ = 2 γ = 0.5 γ = 1 γ = 2

0.5 0 M 1.000 1.000 0.999 1.000 0.998 0.998
DM 0.991 0.987 0.988 0.972 0.965 0.961
DM.step 0.991 0.987 0.988 0.972 0.965 0.961

0.5 M 1.000 1.000 0.999 0.999 0.998 0.998
DM 0.995 0.989 0.988 0.982 0.968 0.962
DM.step 0.995 0.989 0.988 0.982 0.968 0.962

1 M 1.000 1.000 0.999 0.999 0.999 0.998
DM 0.996 0.990 0.987 0.988 0.966 0.963
DM.step 0.996 0.990 0.987 0.988 0.966 0.963

1 0 M 1.000 1.000 1.000 1.000 0.999 0.999
DM 0.997 0.996 0.995 0.980 0.978 0.978
DM.step 0.997 0.996 0.995 0.980 0.978 0.978

0.5 M 1.000 1.000 1.000 1.000 0.999 0.999
DM 0.998 0.995 0.996 0.984 0.979 0.980
DM.step 0.998 0.995 0.996 0.984 0.979 0.980

1 M 1.000 1.000 1.000 1.000 0.999 0.999
DM 0.999 0.995 0.995 0.985 0.981 0.979
DM.step 0.999 0.995 0.995 0.985 0.981 0.979

10 0 M 1.000 1.000 1.000 1.000 1.000 1.000
DM 0.999 0.999 0.999 0.986 0.987 0.989
DM.step 0.999 0.999 0.999 0.986 0.987 0.989

0.5 M 1.000 1.000 1.000 1.000 1.000 1.000
DM 0.999 0.999 0.999 0.986 0.989 0.989
DM.step 0.998 0.999 0.999 0.986 0.989 0.989

1 M 1.000 1.000 1.000 1.000 1.000 1.000
DM 0.999 0.999 0.998 0.987 0.988 0.990
DM.step 0.998 0.999 0.998 0.987 0.988 0.990

Table 11: Marginal confidence set for the rank of a single CZ: coverage. Nominal coverage is 0.95.
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Figure 19: Marginal confidence set for the rank of a single CZ: relative length for the correlational design
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Figure 20: Marginal confidence set for the rank of a single CZ: relative length for the movers design
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Appendix F Supporting Results for the Empirical Applications

F.1 PISA Student Tests in OECD Countries: Reading
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Figure 21: Point estimates and marginal confidence intervals (estimates plus or minus twice the standard
errors) for the expected reading test score in each OECD country (except for Spain for which there is no
data). The PISA scale is normalized to approximately fit a normal distribution with the mean of 500 and
standard deviation of 100.
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F.2 PISA Student Tests in OECD Countries: Math and Science Proficiency
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OECD Countries Mean 2018 PISA Math Test Scores
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Figure 22: Point estimates and marginal confidence intervals (estimates plus or minus twice the standard
errors) for the expected math (top) and science proficiency (bottom) test scores in each OECD country.
The PISA scale is normalized to approximately fit a normal distribution with the mean of 500 and standard
deviation of 100.
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Figure 23: Panel A: rank of each OECD country by math score with the 95% marginal confidence set for
the rank (“CS”). Panel B: rank of each OECD country by math score with the 95% simultaneous confidence
set for the rank (“CS”). Different quartiles of the rankings are indicated with different colors.
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Figure 24: Panel A: rank of each OECD country by science proficiency score with the 95% marginal confidence
set for the rank (“CS”). Panel B:s rank of each OECD country by science proficiency score with the 95%
simultaneous confidence set for the rank (“CS”). Different quartiles of the rankings are indicated with
different colors.
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Math Science

τ - best τ - best

Rank Country Score 95% CS 95% 50% 5% Country Score 95% CS 95% 50% 5%

1 Japan 526.97 [1, 6] 6 4 3 Estonia 530.11 [1, 4] 4 3 2
2 Korea 525.93 [1, 7] 6 6 4 Japan 529.14 [1, 5] 5 4 3
3 Estonia 523.41 [1, 6] 7 6 4 Finland 521.88 [1, 6] 6 5 5
4 Netherlands 519.23 [1, 11] 11 7 7 Korea 519.01 [1, 7] 7 6 6
5 Poland 515.65 [1, 12] 12 11 8 Canada 518.00 [2, 7] 7 6 6
...

...
...

... τ - worst
...

...
... τ - worst

33 Turkey 453.51 [32, 34] 6 6 5 Israel 462.20 [29, 34] 8 8 8
34 Greece 451.37 [32, 34] 6 6 5 Greece 451.63 [32, 35] 6 5 4
35 Chile 417.41 [35, 36] 3 3 3 Chile 443.58 [34, 35] 4 4 4
36 Mexico 408.80 [35, 36] 3 3 2 Mexico 419.20 [36, 37] 2 2 2
37 Colombia 390.93 [37, 37] 1 1 1 Colombia 413.32 [36, 37] 2 2 2

Table 12: The first five and the last five among the OECD countries ranked by PISA math and science
proficiency test scores with the simultaneous 95% confidence sets (“CS”) for their ranks. “95%, 50%, 5%
τ -best (-worst)” refer to the size of the 95%, 50%, 5% confidence sets for the “τ -best (-worst)” countries,
where τ ∈ 1..5 for the first five countries and τ ∈ 5..1 for the last five countries.
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F.3 Applying Andrews et al. (2018) to the PISA Data

This subsection provides more details and the results for the application of Andrews et al. (2018) to the

PISA data as discussed in Remark 4.1.

The results are reported in Table 13. Following Andrews et al. (2018), we consider two types of confidence

sets. While we refer to their paper for details, it is useful to observe how these confidence sets differ. The

first type of confidence set is valid conditional on the target selected, in this case on the identity of the

country with the highest point estimate, Estonia (the “winner” in the sample). Conditional validity is

more demanding but may be desirable in the PISA setting, for example if one wants to ensure validity

conditional on the recommendation made to a policy maker in Estonia. The second type of confidence set is

unconditional and requires validity on average over the countries that statistically could have had the highest

point estimate. For unconditional validity, Andrews et al. (2018) develop two procedures for constructing

confidence sets, a projection and a hybrid procedure, the latter typically delivering shorter confidence sets

than the former while satisfying the same unconditional coverage guarantee. Confidence sets for the sample

“losers” are construct in an analogous fashion.

We find that both the conditional and the unconditional hybrid confidence sets are relatively narrow

while the unconditional projection confidence set is wide. For example, the 95% conditional confidence set

for the expected reading score of the sample “winner”, Estonia, is (517.9, 526.6). Only 4 out of 35 other

countries have higher point estimates than the lower endpoint of this confidence set. In conclusion, one can

be confident that the sample “winner” truly has a high reading score. However, just like Estonia’s marginal

confidence interval displayed in Figure 21, Andrews et al. (2018)’s confidence set does not allow us to draw

any conclusions about what is the true rank of Estonia nor which country has true rank one. On the other

hand, our marginal confidence sets for the rank of Estonia tell us that (with 95% probability) its true rank

lies between 1 and 5. In addition, our τ -best confidence set for τ = 1 shows that (with 95% probability)

there are 6 countries in total that could be the best.
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Reading

Type of CS
CS on PISA score

for sample “winner”

Number of countries
with sample score

above CS lower bound

CS on PISA score
for sample “loser”

Number of countries
with sample score

below CS upper bound

Conditional: (517.9, 526.6) 4 (406.0, 419.3) 1

Unconditional:

Projection (458.6, 587.4) 31 (298.6, 526.1) 31

Hybrid (517.8 526.7) 4 (405.8, 419.5) 1

Table 13: Andrews et al. (2018) equal-tailed 95% confidence sets for the expected score of the countries with
the highest (sample “winner”) and the lowest (sample “loser”) point estimates on PISA Reading test among
the OECD countries.
“Number of countries with sample score above CS lower bound” shows the number of point estimates above
the lower bound of the corresponding 95% confidence set for the sample “winner”. “Number of countries
with sample score below CS upper bound” shows the number of point estimates below the upper bound of
the corresponding 95% confidence set for the sample “loser”.
Conditional 95% CS provides coverage conditional on a particular country with the highest (lowest) point
estimate. Projection 95% CS provides coverage on average over the countries that could statistically get the
highest or the lowest point estimates. Hybrid 95% CS combines conditional and unconditional approaches
to provide unconditional coverage with improved length of the CS.
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F.4 CZ and County Correlational Mobility Estimates with Marginal Confidence

Intervals
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Figure 25: Estimates of ȳc25, the expected percentile rank of a child’s average household income for 2014-
2015 in the national distribution of her cohort, with marginal confidence intervals (estimates plus or minus
twice the standard errors). The estimates cover all 741 commuting zones (top) and 3208 of the 3219 counties
(bottom).
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F.5 CZ and County Movers Mobility Estimates with Marginal Confidence In-

tervals

−6

−3

0

3

6

0 200 400 600
Commuting Zone

M
ov

er
s 

E
st

im
at

e

estimate
estimate +/− 2SE

Movers Estimates based on child's income at the age 26
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Movers Estimates based on child's income at the age 26

Figure 26: Movers estimates of exposure effects µc25 with marginal confidence intervals (estimates plus or
minus twice the standard errors). The estimates cover 595 of the 741 commuting zones (top) and 2367 of
the 3219 counties (bottom).
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F.6 50 Most Populous Commuting Zones and Counties Mobility Estimates
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Mean percentile rank in the national distribution of child's average family income in 2014−2015 for 50 most populous CZs
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Figure 27: Estimates of ȳc25 the mean percentile rank of child’s average household income for 2014-2015 in
the national distribution of her cohort with marginal confidence intervals (estimates plus or minus twice the
standard errors) from Chetty et al. (2018) for the 50 most populous Commuting Zones (top) and the 50
most populous counties (bottom).
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Movers estimates based on child's income at the age 26 for 50 most populous CZs
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Movers estimates based on child's income at the age 26 for the 50 most populous counties

Figure 28: Movers estimates of the exposure effects µc25 with marginal confidence intervals (estimates plus
or minus twice the standard errors) from Chetty and Hendren (2018) for the 50 most populous CZs (top)
and for the 50 most populous counties (bottom).
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F.7 Confidence Sets for the Ranks of the 50 Most Populous CZs by Movers

Estimates
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Figure 29: Panel A: point estimates and the 95% marginal confidence sets (“CS”) for the ranks of the 50
most populous CZs by µc25. Panel B: point estimates and the 95% simultaneous confidence sets (“CS”) for
the ranks of the 50 most populous CZs by µc25.
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F.8 Confidence Sets for the Ranks of the 50 Most Populous Counties
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Figure 30: Panel A: point estimates and the 95% marginal confidence sets (“CS”) for the ranks of the 50
most populous counties by ȳc25. Panel B: point estimates and the 95% simultaneous confidence sets (“CS”)
for the ranks of the 50 most populous counties by ȳc25.
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Figure 31: Panel A: point estimates and the 95% marginal confidence sets (“CS”) for the ranks of the 50
most populous counties by µc25. Panel B: point estimates and the 95% simultaneous confidence sets (“CS”)
for the ranks of the 50 most populous counties by µc25.
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Correlational Movers

τ - best τ - best

Rank County ˆ̄yc25 95% CS 95% 50% 5% County ˆ̄µc25 95% CS 95% 50% 5%

1 Bergen 0.520 [1, 2] 2 2 1 DuPage 0.540 [1, 25] 25 12 9

2 Fairfax 0.511 [1, 2] 2 2 2 Hartford 0.325 [1, 50] 50 48 31

3 Nassau 0.493 [3, 4] 4 3 3 Contra Costa 0.306 [1, 50] 50 48 36

4 DuPage 0.484 [3, 8] 8 6 6 Bergen 0.302 [1, 50] 50 48 38

5 Middlesex 0.480 [4, 8] 8 8 6 Pinellas 0.276 [1, 50] 50 50 44

..

.
...

...
... τ - worst

...
...

... τ - worst

46 Milwaukee 0.363 [45, 47] 6 6 6 Marion -0.153 [2, 50] 49 49 45

47 Franklin 0.360 [46, 47] 5 5 5 Hennepin -0.185 [2, 50] 49 49 44

48 Wayne 0.346 [48, 49] 3 3 3 Alameda -0.257 [2, 50] 49 49 41

49 Marion 0.344 [48, 49] 3 3 3 Hillsborough -0.279 [2, 50] 49 46 37

50 Shelby 0.318 [50, 50] 1 1 1 Fairfield -0.386 [2, 50] 49 46 37

Table 14: The first five and the last five among the 50 most populous counties ranked by the correlational
mobility estimates on the left and by the movers mobility estimates on the right. “95% CS” refers to the
95% simultaneous confidence set for the rank. “95%, 50%, 5% τ -best (-worst)” refer to the size of the 95%,
50%, 5% confidence sets for the “τ -best (-worst)” counties, where τ ∈ 1..5 for the first five counties and
τ ∈ 5..1 for the last five counties.
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F.9 Correlational Mobility Estimates with Marginal Confidence Sets for Tracts

in Seattle and King County
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Figure 32: Estimates of ȳc25, the expected percentile rank of child’s average household income for 2014-2015
in the national distribution of her cohort, with marginal confidence intervals (estimates plus or minus twice
the standard errors) for all 397 Census tracts in Seattle and King County.
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Figure 33: Map of Seattle and King County with 132 tracts classified as high upward-mobility neighborhoods
(blue). High-upward-mobility neighborhoods are Census tracts with the estimates of ȳc25 among the top
one-third of the tracts in the Seattle and King County area.
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F.10 Applying Andrews et al. (2018) to the Intergenerational Mobility Data

This subsection provides more details and the results for the application of Andrews et al. (2018) to the

intergenerational mobility data as discussed in Remark 4.3.

We focus on correlational estimates for CZs, as these are the most precise estimates and, thus, offer the

best opportunity to reach informative conclusions. Table 15 reports the results. Following Andrews et al.

(2018), we consider the 95% conditional and unconditional (hybrid and projection) confidence sets for a

neighborhood’s true mobility. As discussed in Section F.3, the former is valid conditional on the identity

of the neighborhood with the highest point estimate, while the latter requires validity on average over all

the neighborhoods that statistically could have had the highest point estimate. Conditional validity is more

demanding but may be desirable if the goal is to help low-income families move to the neighborhood with

highest estimated mobility.

We first consider inference on the CZ with the highest point estimate in the national ranking.19 The

95% conditional confidence set for true mobility of the “winning” CZ is (-2.70, 0.66). Thus, we may expect,

with 95% confidence, an income rank between 0 and 66 among children who grew up in the CZ with the

highest point estimate of mobility with parents’ income at the 25th percentile.20 Since the confidence set

includes zero (the smallest possible value of the mobility measure), one cannot be confident that the sample

“winner” truly has high mobility. This conclusion holds both if we consider the conditional confidence set

and unconditional (hybrid or projection) confidence sets.

Next, we restrict the inference problem to the 50 largest CZs by population size. The 95% conditional

confidence set on upward mobility of the CZ with the highest point estimate, San Fransisco, is (0.39, 0.46).

Thus, we may expect, with 95% confidence, an income rank between 39 and 46 of the children who grew up

in San Francisco with parents at the 25th percentile. The lower endpoint of this confidence set is lower than

the point estimates of 31 of the 49 other CZs. By comparison, the 95% unconditional hybrid confidence set

is narrower than the conditional ones, but still contains the point estimates of 19 of the 49 other CZs.

Taken together, the results from Andrews et al. (2018) suggest there is considerable statistical uncertainty

about the true value of upward mobility at the top of the estimated ranking of CZs, even if one restricts the

study to the 50 largest CZs by population size.

However, just like the marginal confidence interval for the “winner” displayed in Figure 25, Andrews et al.

(2018)’s confidence sets do not allow us to draw any conclusions about what is the true rank of the sample

“winner” nor which CZ has true rank one. In contrast, our confidence set for the rank of San Francisco

among the 50 most populous CZs tells us that (with 95% probability) its true rank lies between 1 and 2.

In addition, our τ -best confidence set for τ = 1 shows that (with 95% probability) there are only 4 CZs

that could be the best. It is interesting to note that our confidence sets for the ranks are very narrow even

though Andrews et al. (2018)’s confidence sets for true mobility of the “winner” are fairly wide. This finding

illustrates that it can be possible to achieve a statistically informative ranking even if one cannot draw firm

conclusions about the true value of the sample “winner”.

19We have also performed inference on the neighborhoods with the highest point estimate within each state. In many cases,
the lower endpoint of the 95% confidence sets include the point estimates of a majority of the other neighborhoods within the
state.

20Although percentiles can only take values between 0 and 1, the estimated confidence sets of Andrews et al. (2018) may take
negative value. Following their suggestion, we therefore trim the confidence sets when interpreting the results by substituting
negative lower endpoints with zero.
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All 741 CZs 50 most populous CZs

Type of CS
CS on correlational

mobility for
sample “winner”

Number of CZs with
correlational estimates
above CS lower bound

CS on correlational
mobility for

sample “winner”

Number of CZs with
correlational estimates
above CS lower bound

Conditional: (-2.70, 0.66) 741 (0.389, 0.457) 31

Trimmed (0, 0.66) 741

Unconditional:

Projection (-14.95, 16.28) 741 (0.417, 0.496) 19

Trimmed (0, 16.28) 741

Hybrid (-2.79, 0.66) 741 (0.416, 0.457) 19

Trimmed (0, 0.66) 741

Table 15: Andrews et al. (2018) equal-tailed 95% confidence sets for true upward mobility of the CZ with the
highest correlational point estimate (sample “winner”) among all 741 CZs and among the 50 most populous
CZs. “Number of CZs with correlational estimates above CS lower bound” refers to the number of point
estimates above the lower bound of the corresponding confidence set for the sample “winner”. Conditional
95% CS provides coverage conditional on the identity of the CZ with the highest mobility point estimate.
Projection 95% CS provides coverage on average over the CZs that could statistically have had the highest
point estimate. Hybrid 95% CS combines conditional and unconditional approaches to provide unconditional
coverage with improved length of the CS.

Objective Avg Top 1/3 - Avg Bottom 2/3 Avg Top 1/3 - Overall Avg

Tracts sample King County Seattle CZ Seattle CZ
Number of tracts 397 905 905

Conditional: (-0.030, 0.091) (-13.449, 0.009) (-8.966, 0.006)

Unconditional:

Projection (0.036, 0.136) (0.034, 0.135) (0.022, 0.090)

Hybrid (0.034, 0.091) (0.0309, 0.0312) (0.0206, 0.0208)

Table 16: Andrews et al. (2018) equal-tailed 95% confidence sets for the true difference between the average
mobility of tracts with correlational mobility estimate in the top one-third and the average mobility of tracts
with correlational mobility estimate in the bottom two-thirds for King County tracts in the first column
and for all tracts in Seattle CZ in the second column. Andrews et al. (2018) equal-tailed 95% confidence
sets for true difference between the average mobility of tracts with correlational mobility estimate in the top
one-third and the average mobility of all tracts in Seattle CZ in the third column. The confidence sets in
the third column correspond to the ones reported by Andrews et al. (2018) on Figures 7 and 8. Conditional
95% CS provides coverage conditional on the identity of the CZ with the highest mobility point estimate.
Projection 95% CS provides coverage on average over the CZs that could statistically have had the highest
point estimate. Hybrid 95% CS combines conditional and unconditional approaches to provide unconditional
coverage with improved length of the CS. Note: the difference between the average of the top one-third and
the average of the bottom two-thirds is one and a half times larger than the difference between the average
of the top one-third and the overall average. Thus the endpoints in the second column are exactly one and
a half times larger in absolute value than the endpoints in the third column.
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F.11 Heat Maps of ˆ̄yc25 for Counties and CZs and Structure of the Rankings

A

B

C

Rank

Figure 34: Ranking of counties by point estimates and lower and upper endpoints of simultaneous confidence
sets for the ranks of all counties. The heat maps are based on estimates of ȳc25, the mean percentile rank
of child’s average household income for 2014-2015, for all counties. The map in Panel A is constructed by
dividing the counties into deciles based on the estimated values of ȳc25, and shading the areas so that lighter
colors correspond to higher absolute mobility or, equivalently, lower (“better”) rank. The maps in Panels
B and C show the lower and upper endpoints of the 95% simultaneous confidence sets for the ranks of all
counties, using the same color coding as for the estimated ranks in Panel A.
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Figure 35: The heat map in Panel A is constructed by assigning counties to groups depending on the lower
and upper endpoints of the 95% simultaneous confidence sets for the ranks of all counties. A county is
assigned to a high mobility group (“Top Half 95%”) if the upper endpoint of its simultaneous confidence
set is in the top half of the national ranking of counties, i.e. when the confidence set lies entirely in the
top half of the ranking, indicating high mobility. A county is assigned to a low mobility group (“Bottom
Half 95%”) if the lower endpoint of its simultaneous confidence set is in the bottom half of the national
ranking of counties, i.e. when the confidence set lies entirely in the bottom half of the ranking, indicating low
mobility. Grey colors represent the counties that cannot be assigned to either of the two groups. The heat
map in Panel B is constructed in the same way, except the high and low mobility groups are now defined in
terms of top and bottom quartiles in the national ranking of the counties.
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Figure 36: The heat map in Panel A is constructed by assigning CZs to groups depending on the lower and
upper endpoints of the 95% simultaneous and marginal confidence sets for the ranks of all CZs. A CZ is
assigned to a high mobility group (“Top Half 95%”), if the upper endpoint of its simultaneous confidence
set is in the top half of the national ranking of CZs, i.e., when the confidence set lies entirely in the top half
of the ranking, indicating high mobility. A CZ is assigned to the group “Marginal \ Simultaneous” if
the upper endpoint of its marginal confidence set is in the top half of the national ranking of CZs but the
upper endpoint of its simultaneous confidence set is in the bottom half of the national ranking of CZs. A
CZ is assigned to a low mobility group (“Bottom Half 95%”), if the lower endpoint of its simultaneous
confidence set is in the bottom half of the national ranking of CZs, i.e., when the confidence set lies entirely
in the bottom half of the ranking, indicating low mobility. A CZ is assigned to the group “Marginal \
Simultaneous” if the lower endpoint of its marginal confidence set is in the bottom half of the national
ranking of CZs but the lower endpoint of its simultaneous confidence set is in the top half of the national
ranking of CZs. Grey colors represent the CZs that cannot be assigned to any of the four groups. The heat
map in Panel B is constructed in the same way, except the high and low mobility groups are now defined in
terms of top and bottom quartiles in the national ranking of the CZs.
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F.12 Heat Maps for the Movers Estimates of the Exposure Effects

A

B

C

Rank

Figure 37: Ranking of CZs by point estimates and lower and upper endpoints of simultaneous confidence
sets. The heat maps are based on movers estimates of the exposure effects µc25. The map in Panel A is
constructed by dividing the CZs into deciles based on the estimated values of µc25, and shading the areas
so that lighter colors correspond to higher values of exposure effects or, equivalently, lower (“better”) rank.
The maps in Panels B and C show the lower and upper endpoints of the 95% simultaneous confidence sets
for the ranks of all CZs, using the same color coding as for the estimated ranks in Panel A.
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Figure 38: Ranking of counties by point estimates and lower and upper endpoints of simultaneous confidence
sets. The heat maps are based on movers estimates of the exposure effects µc25. The map in Panel A is
constructed by dividing the counties into deciles based on the estimated values of µc25, and shading the areas
so that lighter colors correspond to higher values of exposure effects or, equivalently, lower (“better”) rank.
The maps in Panels B and C show the lower and upper endpoints of the 95% simultaneous confidence sets
for the ranks of all counties, using the same color coding as for the estimated ranks in Panel A.
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